Skip to main content
Log in

Effect of licorice extract on cell viability, biofilm formation and exotoxin production by Staphylococcus aureus

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is one of the most significant clinical pathogen, as it causes infections to humans and animals. Even though several antibiotics and other treatments have been used to control S. aureus infections and intoxication, bacterium is able to adapt, survive and produces exotoxins. Licorice (Glycyrrhiza glabra L.) has been used traditionally in various medicinal (antimicrobial) preparations, and Glycyrrhizic acid (GA) is the major active constituents present in it. In the present investigation the effect of licorice extract on methicillin susceptible S. aureus (FRI 722) and methicillin resistant S. aureus (ATCC 43300) growth and toxin production was studied. The MIC of licorice extract was found to be 0.25 and 2.5 mg GA ml−1 against S. aureus FRI 722 and S. aureus ATCC 43300, respectively. Inhibition of biofilm formation was observed even at very low concentration (25 μg GA ml−1). Gradual decrease in expression and production of exotoxins such as α and β hemolysins and enterotoxin B was observed with the increasing concentrations of licorice extract, however, suboptimal concentration induced the expression of some of the virulence genes. This study indicated efficacy of licorice extract in controlling growth and pathogenicity of both methicillin susceptible and methicillin resistant S. aureus, however, the mechanisms of survival and toxin production at suboptimal concentration needs further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad I, Mehmood Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobials properties. J Ethnopharmacol 62:183–193

    Article  CAS  Google Scholar 

  • Aqil F, Khan MS, Owais M, Ahmad I (2005) Effect of certain bioactive plant extracts on clinical isolates of β-lactamase producing methicillin resistant Staphylococcus aureus. J Basic Microbiol 45:106–114

    Article  Google Scholar 

  • Bendaoud M, Vinogradov E, Balashova NV, Kadouri DE, Kachlany SC, Kaplan JB (2011) Broad-spectrum biofilm inhibition by kingella kingae exopolysaccharide. J Bacteriol 193:3879–3886

    Article  CAS  Google Scholar 

  • Bernardo K, Pakulat N, Fleer S, Schnaith A, Utermöhlen O, Krut O (2004) Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother 48:546–555

    Article  CAS  Google Scholar 

  • Brumfitt W, Hamilton-Miller (1989) Methicillin-resistant Staphylococcus aureus. New Engl J Med 320:1188–1196

    Article  CAS  Google Scholar 

  • Choi JG, Kang OH, Chae HS, Obiang-Obounou B, Lee YS, Oh YC, Kim MS, Shin DW, Kim JA, Kim YH, Kwon DY (2010) Antibacterial activity of hylomecon hylomeconoides against methicillin-resistant Staphylococcus aureus. Appl Biochem Biotechnol 160:2467–2474

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute- CLSI (2009) Performance standards for antimicrobial disk susceptibility tests (10th edition).

  • Cock IE, van-Vuuren SF (2015) South African food and medicinal plant extracts as potential antimicrobial food agents. J Food Sci Technol. doi:10.1007/s13197-015-1806-3

    Google Scholar 

  • Hong YY, Jian-Jun CAI, Rong-ji DAI, Deng Y-L, Yang K, Wei-Wei M (2007) Separation and determination of glycyrrhizic acid and liquiritin in licorice using SPE-RP-HPLC. In Complex medical engineering. Beijing, China, pp. 1856–1860

    Google Scholar 

  • Hossein M, Hadis M, Tahere S (2010) Determining of antibiotic resistance profile in Staphylococcus aureus isolates. Asian Pac J Trop Med 3:734–737

    Article  Google Scholar 

  • Jablonski L, Gregory M, Bohach A (1997) Staphylococcus aureus, fundamentals and frontiers. In: Doyle P, Beuchat LR, Montville TJ (eds) In food microbiology. ASM Pres, Washington DC, p. 353

    Google Scholar 

  • Jafarian MM, Jafarian G, Ghazvini K (2007) In vitro susceptibility of Helicobacter pylori to licorice extract. Iran J Pharm Res 6:69–72

    Google Scholar 

  • Kao TC, Shyu MH, Yen GC (2010) Glycyrrhizic acid and 18 betaglycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3beta signaling and glucocorticoid receptor activation. J Agric Food Chem 58:8623–8629

    Article  CAS  Google Scholar 

  • Khalsa KPS, Tierra M (2008) The way of ayurvedic herbs. Lotus Press, WI, USA

    Google Scholar 

  • Long DR, Mead J, Hendricks JM, Hardy ME, Voyich JM (2013) 18β-glycyrrhetinic acid inhibits methicillin-resistant Staphylococcus aureus survival and attenuates virulence gene expression. Antimicrob Agents Chemother 57:241–247

    Article  CAS  Google Scholar 

  • Machado TB, Pinto AV, Pinto MCFR, Leal ICR, Silva MG, Amaral ACF, Kuster RM, Netto-dosSantos KR (2003) In-vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 21:279–284

    Article  CAS  Google Scholar 

  • Marino M, Bersani C, Comi G (2001) Impedance measurements to study the antimicrobial activity of essential oils from lamiaceae and compositae. Int J Food Microbiol 67:187–195

    Article  CAS  Google Scholar 

  • Morteza SM, Susan M, Esmaeil D, Hossein M, Seyyed MSN (2010) Antibacterial activity of eight Iranian plant extracts against methicillin and cefixime restistant staphylococcous aureus strains. Asian Pac J Trop Med 34:262–265

    Google Scholar 

  • Negi PS, Jayaprakash GK, Jaganmohan Rao L, Sakaraih KK (1999) Antimicrobial activity of turmeric oil: a by-product from curcumin manufacture. J Agric Food Chem 47:4297–4300

    Article  CAS  Google Scholar 

  • Nimsha SW, Smith WM, Mikkelsen D, Waanders J, Kerven G, Nola C, Gary DA, Mark TS (2011) Purified 1-acetoxychavicol acetate (1- ACA) from galangal spice affects membrane fatty acid composition and triggers a cell envelope stress response in Staphylococcus aureus. Int J Antimicrob Agents 39:263–272

    Google Scholar 

  • Pagedar A, Singh J (2014) Evaluation of antibiofilm effect of benzalkonium chloride, iodophore and sodium hypochlorite against biofilm of Pseudomonas aeruginosa of dairy origin. J Food Sci Technol. doi:10.1007/s13197-014-1575-4

    Google Scholar 

  • Palombo EA, Semple SJ (2002) Antibacterial activity of Australian plant extracts against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). J Basic Microbiol 42:444–448

    Article  Google Scholar 

  • Perez C, Paul M, Bazerque P (1990) Antibiotic assay by agar well diffusion method. ACTA Biol Exp 15:113–115

    Google Scholar 

  • Qazi S, Middleton B, Muharram SH, Cockayne A, Hill P, O'Shea P, Chhabra SR, Camara M, Williams P (2006) Nacylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infect Immun 74:910–919

    Article  CAS  Google Scholar 

  • Raja AF, Khan FA, Khan IA, Shawl AS, Arora DS, Shah BA, Taneja SC (2011) Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-beta-boswellic acid from boswellia Serrata. BMC Microbiol 11:54

    Article  CAS  Google Scholar 

  • Rajan PA, Novick RP (2005) Subinhibitory cerulenin inhibits staphylococcal exoprotein production by blocking transcription rather than by blocking secretion. Microbiol 151:3059–3066

    Article  Google Scholar 

  • Rohinishree YS, Negi PS (2012) Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus. J Food Sci 77:M95–M101

    Article  Google Scholar 

  • Sharma M, Anand SK (2002) Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol 19:627–636

    Article  CAS  Google Scholar 

  • Shen F, Tang X, Wang Y, Yang Z, Shi X, et al. (2015) Phenotype and expression profile analysis of Staphylococcus aureus biofilms and planktonic cells in response to licochalcone a. Appl Microbiol Biotechnol 99:359–373

    Article  CAS  Google Scholar 

  • Shin K, Yun Y, Yi S, Lee HG, Cho JC, et al. (2013) Biofilm forming ability of Staphylococcus aureus strains isolated from skin. J Dermatol Sci 71:130–137

    Article  CAS  Google Scholar 

  • Smith K, Gould KA, Ramage G, Gemmell CG, Hinds J, Lang S (2010) Influence of tigecycline on expression of virulence factors in biofilm-associated cells of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:380–387

    Article  CAS  Google Scholar 

  • Stormer FC, Reistad R, Alexander J (1993) Glycyrrhizinic acid in liquorice - evaluation of health hazard. Food Chem Toxicol 31:303–312

    Article  CAS  Google Scholar 

  • Vaya J, Belinky PA, Aviram M (1997) Antioxidant constituent from licorice roots. Free Radic Biol Med 23:302–313

    Article  CAS  Google Scholar 

  • Wei GX, Campagna AN, Bokek LA (2006) Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Agents 57:1100–1109

    Article  CAS  Google Scholar 

  • Witte W (1975) Control of alpha-haemolysin formation by plasmids in distinct strains of S. aureus, influence of erythromycin, rifampicin and streptomycin. In: Jeljaszewicz J (ed) Staphylococci and staphylococcal infection. Gustar Fisher Verlag, Stuttgart, pp. 298–303

    Google Scholar 

  • Wu X, Qian C, Fang H, Wen Y, Zhou J, Zhan ZJ, Ding R, Li O, Gao H (2011) Paenimacrolidin, a novel macrolide antibiotic from paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb Biotechnol 4:491–502

    Article  CAS  Google Scholar 

  • Zhou T, Deng X, Qiu J (2012) Antimicrobial activity of licochalcone E against Staphylococcus aureus and its impact on the production of staphylococcal alpha-toxin. J Microbiol Biotechnol 22:800–805

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Director, CSIR-CFTRI for constant encouragement. YSR acknowledges Council of Scientific and Industrial Research, New Delhi for Senior Research Fellowship for Ph. D. programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Singh Negi.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Research Highlights

• Licorice extract had 30.52 % Glycyrrhizic acid on dry weight basis and it showed antistaphylococcal activity

• Licorice extract showed complete growth inhibition of MSSA at 0.25 mg mL−1 GA and MRSA at 2.5 mg mL−1 GA

• Licorice extract suppressed expression of toxin genes and production of toxins, and inhibited biofilm formation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohinishree, Y.S., Negi, P.S. Effect of licorice extract on cell viability, biofilm formation and exotoxin production by Staphylococcus aureus . J Food Sci Technol 53, 1092–1100 (2016). https://doi.org/10.1007/s13197-015-2131-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-2131-6

Keywords

Navigation