Skip to main content
Log in

Molecular tracking of Salmonella spp. in chicken meat chain: from slaughterhouse reception to end cuts

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Due to the importance of Salmonella spp. in poultry products, this study aimed to track its main contamination routes since slaughtering reception to processing of chicken end cuts. Samples from different steps of slaughtering and processing (n = 277) were collected from two chicken slaughterhouses (Sl1 and Sl2) located in Minas Gerais state, Brazil, and subjected to Salmonella spp. detection. The obtained isolates were subjected to serological identification and tested by PCR for specific Salmonella spp. genes (ompC and sifB). Also, Salmonella spp. isolates were subjected to XbaI macrorestriction and pulsed-field gel electrophoresis (PFGE). Sixty-eight samples were positive for Salmonella spp. and 172 isolates were obtained. Sl1 and Sl2 presented similar frequencies of Salmonella spp. positive samples during reception, slaughtering and processing (p > 0.05), except for higher frequencies in Sl1 for chicken carcasses after de-feathering and evisceration (p < 0.05). PFGE allowed the identification of cross contamination and persistence of Salmonella spp. strains in Sl1. The results highlighted the relevance of the initial steps of chicken slaughtering for Salmonella spp. contamination, and the pre-chilling of carcasses as an important controlling tool. In addition, the presence of Salmonella spp. in chicken end cuts samples represents a public health concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiba M, Kusumoto M, Iwata T (2011) Rapid identification of Salmonella enterica serovars, Typhimurium, Choleraesuis, Infantis, Hadar, Enteritidis, Dublin and Gallinarum, by Multiplex PCR. J Microbiol Methods 85:9–15. doi:10.1016/j.mimet.2011.02.002

    Article  CAS  Google Scholar 

  • Allen VM, Corry JEL, Burton CH, Whyte RT, Mead GC (2000) Hygiene aspects of modern poultry chilling. Int J Food Microbiol 58:39–48. doi:10.1016/S0168-1605(00)00259-2

    Article  CAS  Google Scholar 

  • Almeida MV, Silva AJ, Nero LA (2014) Evaluation of target sequences for the polymerase chain reaction-based detection of Salmonella in artificially contaminated beef. Foodborne Pathog Dis 11:111–118. doi:10.1089/fpd.2013.1623

    Article  Google Scholar 

  • Alvarez J, Sota M, Vivanco AB, Perales I, Cisterna R, Rementeria A, Garaizar J (2004) Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples. J Clin Microbiol 42:1734–1738

    Article  CAS  Google Scholar 

  • Barco L, Barrucci F, Olsen JE, Ricci A (2013) Salmonella source attribution based on microbial subtyping. Int J Food Microbiol 163:193–203. doi:10.1016/j.ijfoodmicro.2013.03.005

    Article  Google Scholar 

  • Boonmar S, Bangtrakulnonth A, Pornrunangwong S, Terajima J, Watanabe H, Kaneko K, Ogawa M (1998) Epidemiological analysis of Salmonella enteritidis isolates from humans and broiler chickens in Thailand by phage typing and pulsed-field gel electrophoresis. J Clin Microbiol 36:971–974

    CAS  Google Scholar 

  • Brasil (2013) Vigilância epidemiológica das doenças transmitidas por alimentos. Brasília, DF, Brasil

    Google Scholar 

  • Capita R, Alonso-Calleja C, Prieto M (2007) Prevalence of Salmonella enterica serovars and genovars from chicken carcasses in slaughterhouses in Spain. J Appl Microbiol 103:1366–1375. doi:10.1111/j.1365-2672.2007.03368.x

    Article  CAS  Google Scholar 

  • Cardinale E, Perrier Gros-Claude JD, Rivoal K, Rose V, Tall F, Mead GC, Salvat G (2005) Epidemiological analysis of Salmonella enterica ssp. Enterica serovars hadar, brancaster and enteritidis from humans and broiler chickens in Senegal using pulsed-field gel electrophoresis and antibiotic susceptibility. J Appl Microbiol 99:968–977. doi:10.1111/j.1365-2672.2005.02618.x

    Article  CAS  Google Scholar 

  • Carrasco E, Morales-Rueda A, García-Gimeno RM (2012) Cross-Contamination and Recontamination by Salmonella in Foods: a Review. Food Res Int 45:545–556. doi:10.1016/j.foodres.2011.11.004

  • CDC (2014) CDC Estimates of Foodborne Illness in the United States. CDC. http://www.cdc.gov/foodborneburden/estimates-overview.html. Accessed 03/12/2014 2014

  • Chen MH, Hwang WZ, Wang SW, Shih YC, Tsen HY (2011) Pulsed field gel electrophoresis (PFGE) analysis for multidrug resistant Salmonella enterica serovar schwarzengrund isolates collected in six years (2000–2005) from retail chicken meat in Taiwan. Food Microbiol 28:399–405. doi:10.1016/j.fm.2010.10.002

    Article  CAS  Google Scholar 

  • Cheong HJ et al. (2007) Characteristics of non-typhoidal Salmonella isolates from human and broiler-chickens in southwestern Seoul, Korea. J Korean Med Sci 22:773–778

    Article  CAS  Google Scholar 

  • Corry JE, Allen VM, Hudson WR, Breslin MF, Davies RH (2002) Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control. J Appl Microbiol 92:424–432

    Article  Google Scholar 

  • Finstad S, O'Bryan CA, Marcy JA, Crandall PG, Ricke SC (2012) Salmonella and broiler processing in the United States: relationship to foodborne Salmonellosis. Food Res Int 45:789–794. doi:10.1016/j.foodres.2011.03.057

    Article  Google Scholar 

  • Goering RV (2010) Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10:866–875. doi:10.1016/j.meegid.2010.07.023

    Article  CAS  Google Scholar 

  • Goksoy EO, Kirkan S, Kok F (2004) Microbiological quality of broiler carcasses during processing in two slaughterhouses in Turkey. Poult Sci 83:1427–1432

    Article  CAS  Google Scholar 

  • Heyndrickx M, Vandekerchove D, Herman L, Rollier I, Grijspeerdt K, De Zutter L (2002) Routes for Salmonella contamination of poultry meat: epidemiological study from hatchery to slaughterhouse. Epidemiol Infec 129:253–265

    CAS  Google Scholar 

  • ISO (2002) ISO 6579 - Microbiology of food and animal feeding stuffs - Horizontal method for the detection of Salmonella spp

  • James C, Vincent C, de Andrade Lima TI, James SJ (2006) The primary chilling of poultry carcasses—a review. Int J Refrig 29:847–862. doi:10.1016/j.ijrefrig.2005.08.003

    Article  Google Scholar 

  • Kim A, Lee YJ, Kang MS, Kwag SI, Cho JK (2007) Dissemination and tracking of Salmonella spp. in integrated broiler operation. J Vet Sci 8:155–161

    Article  CAS  Google Scholar 

  • Lee YJ et al. (2007) Characterization of salmonella spp. isolated from an integrated broiler chicken operation in Korea. J Vet Med Sci 69:399–404

    Article  CAS  Google Scholar 

  • Lee KM, Runyon M, Herrman TJ, Phillips R, Hsieh J (2015) Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Control 47:264–276. doi:10.1016/j.foodcont.2014.07.011

    Article  Google Scholar 

  • Lillard HS (1990) The impact of commercial processing procedures on the bacterial contamination and cross-contamination of broiler carcasses. J Food Protect 53:202–207

    Google Scholar 

  • Liu B et al. (2011) PCR identification of salmonella serogroups based on specific targets obtained by comparative genomics. Int J Food Microbiol 144:511–518. doi:10.1016/j.ijfoodmicro.2010.11.010

    Article  CAS  Google Scholar 

  • Nogrady N et al. (2008) Prevalence and characterization of Salmonella infantis isolates originating from different points of the broiler chicken-human food chain in Hungary. Int J Food Microbiol 127:162–167. doi:10.1016/j.ijfoodmicro.2008.07.005

    Article  CAS  Google Scholar 

  • Olsen JE, Brown DJ, Madsen M, Bisgaard M (2003) Cross-contamination with Salmonella on a broiler slaughterhouse line demonstrated by use of epidemiological markers. J Appl Microbiol 94:826–835

    Article  CAS  Google Scholar 

  • Rasschaert G, Houf K, De Zutter L (2007) Impact of the slaughter line contamination on the presence of Salmonella on broiler carcasses. J Appl Microbiol 103:333–341. doi:10.1111/j.1365-2672.2006.03248.x

    Article  CAS  Google Scholar 

  • Rasschaert G, Houf K, Godard C, Wildemauwe C, Pastuszczak-Frak M, De Zutter L (2008) Contamination of carcasses with Salmonella during poultry slaughter. J Food Protect 71:146–152

    CAS  Google Scholar 

  • Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3:59–67. doi:10.1089/fpd.2006.3.59

    Article  CAS  Google Scholar 

  • Rodrigues ACA, Pinto PSA, Vanetti MCD, Bevilacqua PD, Pinto MS, Nero LA (2008) Análise e monitoramento de pontos críticos no abate de frangos utilizando indicadores microbiológicos Cienc Rural 38:1948–1953

  • Slader J, Domingue G, Jorgensen F, McAlpine K, Owen RJ, Bolton FJ, Humphrey TJ (2002) Impact of transport crate reuse and of catching and processing on Campylobacter and Salmonella contamination of broiler chickens. Appl Environ Microbiol 68:713–719

    Article  CAS  Google Scholar 

  • Steve Yan S, Pendrak ML, Abela-Ridder B, Punderson JW, Fedorko DP, Foley SL (2003) An overview of Salmonella typing: public health perspectives. Clin Appl Immun Rev 4:189–204. doi:10.1016/j.cair.2003.11.002

    Article  Google Scholar 

  • USDA/FSIS (2014) Isolation and identification of Salmonella from meat, poultry, pasteurized egg,and catfish products and carcass and environmental sponges.

  • Von Rückert DA, Pinto PS, Santos BM, Moreira MA, Rodrigues AC (2009) Pontos críticos de controle de Salmonella spp. no abate de frangos. Arq Bras Med Vet Zoo 61:326–330

    Article  Google Scholar 

  • Wang H, Ye K, Wei X, Cao J, Xu X, Zhou G (2013) Occurrence, antimicrobial resistance and biofilm formation of Salmonella isolates from a chicken slaughter plant in China Food Control 33:378–384 doi:10.1016/j.foodcont.2013.03.030

Download references

Acknowledgments

The authors are thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo a Pesquisa e Inovação do Estado de Minas Gerais (FAPEMIG) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Augusto Nero.

Additional information

Highlights

• Detection of Salmonella during chicken slaughtering and processing • Initial slaughter steps as contamination sources, and the pre-chilling as control.

Salmonella spp. tracking by PFGE and identification of contamination routes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, M.R., Cavicchioli, V.Q., Camargo, A.C. et al. Molecular tracking of Salmonella spp. in chicken meat chain: from slaughterhouse reception to end cuts. J Food Sci Technol 53, 1084–1091 (2016). https://doi.org/10.1007/s13197-015-2126-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-2126-3

Keywords

Navigation