Skip to main content

Advertisement

Log in

Apple phenolics as nutraceuticals: assessment, analysis and application

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Humankind is presently engulfed by convenience quench, modern life style and urbanized diet system leading to progression in array of health disorders. The past decade confronted cardiometabolic disorder (21.8 %), lower respiratory and chronic obstructive lung disease (12.5 %) as the major causes of death world over. In anticipation, scientific communities' have demonstrated the role of healthy diets, especially those rich in fruits and vegetables, for management of such health related issues. These horticultural  crops are considered as a good source of polyphenols such as dihydrochalcones, flavanols, flavonols, anthocyanins and phenolic acids. The present article reviews the efforts made to assess the potential of apple phenolic compounds present in fresh fruits, leaves, bark and pomace as dietary polyphenols. Considering the positive impact of such phytochemicals on human health, various nutraceuticals, dietary supplements and phenolic-rich food products are presently available on market shelves. On analytical front, improved instrumentation based on liquid chromatography (HPLC, UPLC, LC/MS/MS) have made the assessment of phenolics more rapid and reliable. Thus, owing to the emergent interest in natural compounds, it is pertinent to discuss the latest significant research findings on therapeutic aspects along with probable metabolic mechanisms of dietary polyphenols found in apples and their implications on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, Rice-Evans CA (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 33:1693–1702

    Article  CAS  Google Scholar 

  • Alonso-Salces RM, Korta E, Barranco A, Berrueta LA, Gallo B, Vicente F (2001) Pressurized liquid extraction for the determination of polyphenols in apple. J Chromatogr A 933:37–43

    Article  CAS  Google Scholar 

  • American Diabetes Association, Diagnosis and classification of diabetes mellitus (2010) Diab Care 33:S62-S69.

  • Aprikian O, Busserolles J, Manach C, Mazur A, Morand C, Davicco MJ, Besson C, Rayssiguier Y, Remesy C, Demigne C (2002) Lyophilized apple counteracts the development of hypercholesterolemia, oxidative stress, and renal dysfunction in obese zucker rats. J Nutr 132:1969–1976

    CAS  Google Scholar 

  • Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12:43

    Article  Google Scholar 

  • Bai XL, Yue TL, Yuan YH, Zhang HW (2010) Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J Sep Sci 33:3751–3758

    Article  CAS  Google Scholar 

  • Bellion P, Hofmann T, Pool-Zobel BL, Will F, Dietrich H, Knaup B, Richling E, Baum M, Eisenbrand G, Janzowski C (2008) Antioxidant effectiveness of phenolic apple juice extracts and their gut fermentation products in the human colon carcinoma cell line caco-2. J Agric Food Chem 56:6310–6317

    Article  CAS  Google Scholar 

  • Bhushan S, Kalia K, Sharma M, Singh B, Ahuja PS (2008) Processing of apple pomace for bioactive molecules. Crit Rev Biotechnol 28:285–296

    Article  CAS  Google Scholar 

  • Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:5

    Article  Google Scholar 

  • Cai Q, Li B, Yu F, Lu W, Zhang Z, Yin M, Gao H (2013) Investigation of the protective effects of phlorizin on diabetic cardiomyopathy in db/db mice by quantitative proteomics. J Diab Res Article ID 263845.

  • Cao X, Wang C, Pei H, Sun B (2009) Separation and identification of polyphenols in apple pomace by high-speed counter-current chromatography and high-performance liquid chromatography coupled with mass spectrometry. J Chromatogr A 1216:4268–4274

    Article  CAS  Google Scholar 

  • Ceymann M, Arrigoni E, Scharer H, Baumgartner D, Nising AB, Hurrell RF (2011) Rapid high performance screening method using UHPLC-MS to quantify 12 polyphenol compounds in fresh apples. Anal Methods 3:1774–1778

    Article  CAS  Google Scholar 

  • Chai SC, Hooshmand S, Saadat RL, Payton ME, Brummel-Smith K, Arjmandi BH (2012) Daily apple versus dried plum: impact on cardiovascular disease risk factors in postmenopausal women. J Acad Nutr Diet 112:1158–1168

    Article  Google Scholar 

  • Chan A, Shea TB (2009) Dietary supplementation with apple juice decreases endogenous amyloid-β levels in murine brain. J Alzheimers Dis 16:167–171

    CAS  Google Scholar 

  • Chang WT, Huang WC, Liou CJ (2012) Evaluation of the anti-inflammatory effects of phloretin and phlorizin in lipopolysaccharide-stimulated mouse macrophages. Food Chem 134:972–979

  • Chen JC, Ho FM, Chao PDL, Chen CP, Jeng KCG, Hsu HB, Lee ST, Wu WT, Lin WW (2005) Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-κ B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521:9–20

    Article  CAS  Google Scholar 

  • Chen NN, Zhao SC, Deng LG, Guo CY, Mao JS, Zheng H, Yang GS, Lu X, Aboul-Enein HY (2011) Determination of five polyphenols by HPLC/DAD and discrimination of apple varieties. Chromatographia 73:595–598

    Article  CAS  Google Scholar 

  • Chu YF, Liu RH (2005) Cardioprotective potentials of apple phytochemicals in LDL oxidation and LDL receptor expression. Cornell Institute of Food Science Symposium May 22–24.

  • D’Archivio M, Files C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Annali Dell’Istituto Superiore di Sanita 43:348–361

    Google Scholar 

  • De Paepe D, Servaes K, Noten B, Diels L, De Loose M, Van Droogenbroeck B, Voorspoels S (2013) An Improved mass spectrometric method for identification and quantification of phenolic compounds in apple fruits. Food Chem 136:368–375

    Article  Google Scholar 

  • Donno D, Beccaro GL, Mellano MG, Torello Marinoni D, Cerutti AK, Canterino S, and. Bounous G (2012) Application of sensory, nutraceutical and genetic techniques to create a quality profile of ancient apple cultivars. J Food Qual 35:169–181.

  • FAO (2013) Statistical Year Book, Food and agriculture organization of the united nations, Rome

  • Foo LY, Lu Y (1999) Isolation and identification of procyanidins in apple pomace. Food Chem 64:511–518

    Article  CAS  Google Scholar 

  • Gonzalez-Gallego J, Sanchez-Campos S, Tunon MJ (2007) Anti-inflammatory properties of dietary flavonoids. Nutr Hosp 22:287–293

    CAS  Google Scholar 

  • Gosse F, Guyot S, Roussi S, Lobstein A, Fischer B, Seiler N, Raul F (2005) Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 26:1291–1295

    Article  CAS  Google Scholar 

  • Graziani G, D'Argenio G, Tuccillo C, Loguercio C, Ritieni A, Morisco F, Del Vecchio Blanco C, Fogliano V, Romano M (2005) Apple polyphenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Gut 54:193–200

  • Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages. Mediat Inflamm Volume 2007, Article ID 45673. doi:10.1155/2007/45673

  • He X, Liu RH (2008) Phytochemicals of apple peels: isolation, structure, elucidation, and their antiproliferative and antioxidant activities. J Agric Food Chem 56:9905–9910

    Article  CAS  Google Scholar 

  • Huai-De X, Lin-Bin W, Li-Jia Z (2010) Purification and antioxidant activity of polyphenols from apple tree leaves. Food Sci 31:72–78

  • Huber GM, Rupasinghe HP (2007) Phenolic profiles and antioxidant properties of apple skin extracts. J Food Sci 74:693–700

  • Hyson DA (2011) A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr 2:408–420

    Article  CAS  Google Scholar 

  • Jung M, Triebel S, Anke T, Richling E, Erkel G (2009) Influence of apple polyphenols on inflammatory gene expression. Mol Nutr Food Res 53:1263–1280

    Article  CAS  Google Scholar 

  • Kahle K, Kraus M, Richling E (2005) Polyphenol profiles of apple juices. Mol Nutr Food Res 49:797–806

    Article  CAS  Google Scholar 

  • Karaman S, Tutem E, Baskan KS, Apak R (2013) Comparison of antioxidant capacity and phenolic composition of peel and flesh of some apple varieties. J Sci Food Agric 93:867–875

  • Kern M, Pahlke G, Balavenkatraman KK, Bohmer FD, Marko D (2007) Apple polyphenols affect protein kinase C activity and the onset of apoptosis in human colon carcinoma cells. J Agric Food Chem 55:4999–5006

    Article  CAS  Google Scholar 

  • Kim MS, Kwon JY, Kang NJ, Lee KW, Lee HJ (2009) Phloretin induces apoptosis in H-ras MCF10A human breast tumor cells through the activation of p53 via JNK and p38 mitogen-activated protein kinase signaling. Ann N Y Acad Sci 1171:479–483

    Article  CAS  Google Scholar 

  • Kindt M, Orsini MC, Costantini B (2007) Improved high-performance liquid chromatography–diode array detection method for the determination of phenolic compounds in leaves and peels from different apple varieties. J Chromatogr Sci 45:507–514

    Article  CAS  Google Scholar 

  • Kitanaka JI, Ishibashi T, Baba A (1993) Phloretin as an antagonist of prostaglandin f, receptor in cultured rat astrocytes. J Neuro Chem 60:704–708

  • Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568

    CAS  Google Scholar 

  • Kobori M, Iwashita K, Shinmoto H, Tsushida T (1999) Phloretin induced apoptosis inB16 melanoma 4A5 and and HL60 human leukemia. Biosci Biotech Boich 63:719–725

  • Lamperi L, Chiuminatto U, Cincinelli A, Galvan P, Giordani E, Lepri L, Del Bubba M (2008) Polyphenol levels and free radical scavenging activities of four apple cultivars from integrated and organic farming in different Italian areas. J Agric Food Chem 56:6536–6546

    Article  CAS  Google Scholar 

  • Lavelli V, Corti S (2011) Phloridzin and other phytochemicals in apple pomace: stability evaluation upon dehydration and storage of dried product. Food Chem 129:1578–1583

    Article  CAS  Google Scholar 

  • Lee JH, Regmi S, Kim JA, Cho MH, Yun H, Lee CS, Lee J (2011) Apple flavonoid phloretin inhibits Escherichia coli o157:h7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun 79:4819–4827

    Article  CAS  Google Scholar 

  • Liu RH, Sun J (2003) Antiproliferative activity of apples is not due to phenolic-induced hydrogen peroxide formation. J Agric Food Chem 51:1718–1723

    Article  CAS  Google Scholar 

  • Lommen A, Godejohann M, Venema DP, PCH H, Spraul M (2000) Application of directly coupled HPLC − NMR − MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal Chem 72:1793–1797

    Article  CAS  Google Scholar 

  • Loots DT, Westhuizen FHV, Jerling J (2006) Polyphenol composition and antioxidant activity of kei-apple (dovyalis caffra) juice. J Agric Food Chem 54:1271–1276

    Article  CAS  Google Scholar 

  • Malekova L, Tomaskova J, Novakova M, Stefanik P, Kopacek J, Lakatos B, Pastorekova S, Krizanova O, Breier A, Ondrias K (2007) Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels. Pflugers Arch - Eur J Physiol 455:349–357

    Article  CAS  Google Scholar 

  • Mari A, Tedesco I, Nappo A, Russo GL, Malorni A, Carbone V (2010) Phenolic compound characterization and antiproliferative activity of “annurca” apple, a southern Italian cultivar. Food Chem 123:157–164

    Article  CAS  Google Scholar 

  • Mehrabani LV, Dadpour MR, Delazar A, Movafeghi A, Hassanpouraghdam MB (2011) Quantification of phenolic compounds in peel and pulp of ‘Zonouz’ apple cultivar from Iran. Rom Biotech Lett 16:6390–6395

  • Mehrabani LV, Hassanpouraghdam MB, Dadpour MR (2012) HPLC assisteddetermination of phenolic compounds in two apple cultivars from Iran. J Food Agri Environ 10:233–235

  • Miura T, Chiba M, Kasai K, Nozaka H, Nakamura T, Shoji T, Kanda T, Ohtake Y, Sato T (2008) Apple procyanidins induce tumor cell apoptosis through mitochondrial pathway activation of caspase-3. Carcinogenesis 29:585–593

    Article  CAS  Google Scholar 

  • Najafian M, Jahromi MZ, Nowroznejhad MJ, Khajeaian P, Kargar MM, Sadeghi M, Arasteh A (2012) Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol Biol Rep 39:5299–5306

    Article  CAS  Google Scholar 

  • Neiva TJ, Morais L, Polack M, Simoes CM, D’Amico EA (1999) Effects of catechins on human blood platelet aggregation and lipid peroxidation. Phytother Res 13:597–600

    Article  CAS  Google Scholar 

  • Nelson JA, Falk RE (1993) The efficacy of phloridzin and phloretin on tumor cell growth. Anticancer Res 13:2287–2292

    CAS  Google Scholar 

  • Neveu V, Perez-Jiménez J, Vos F, Crespy V, Chaffaut L, Mennen L, Knox C, Eisner R., Cruz J, Wishart D, Scalbert (2010). Phenol explorer: an online comprehensive database on polyphenol contents in food. Database (Oxford). doi:10.1093/database/bap024

  • Ohta T, Morinaga H, Yamamoto T, Yamada T (2012) Effect of phlorizin on metabolic abnormalities in spontaneously diabetic Torii (SDT) rats. Open J Animal Sci 2:113–118

    Article  CAS  Google Scholar 

  • Park SY, Kim EJ, Shin HK, Kwon DY, Kim MS, Surh YJ, Park JHY (2007) Induction of apoptosis in HT-29 colon cancer cells by phloretin. J Med Food 10:581–586

    Article  CAS  Google Scholar 

  • Picinelli A, Suarez B, Mangas JJ (1997) Analysis of polyphenols in apple products. Z Lebensm Unters Forsch A 204:48–51

    Article  CAS  Google Scholar 

  • Plaza M, Kariuki J, Turner C (2014) Quantification of individual phenolic compounds' contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection. J Agric Food Chem 62:409–418

    Article  CAS  Google Scholar 

  • Przybylska K, Bennett RN, Kromer K, Gee JM (2007) Assessment of the antiproliferative activity of carrot and apple extracts. Polish J Food Nut Sci 57:307–314

  • Ramljak D, Romanczyk LJ, Metheny-Barlow LJ, Thompson N, Knezevic V, Galperin M, Ramesh A, Dickson RB (2005) Pentameric procyanidin from theobroma cacao selectively inhibits growth of human breast cancer cells. Mol Cancer Ther 4:537–546

    Article  CAS  Google Scholar 

  • Rana S, Rana A, Gulati A, Bhushan S (2014) RP-HPLC-DAD determination of phenolics in industrial apple pomace. Food Anal Methods 7:1424–1432

    Article  Google Scholar 

  • Randhawa V, Sharma P, Bhushan S, Bagler G (2013) Identification of key nodes of type 2 diabetes mellitus protein interactome and study of their interactions with phloridzin. OMICS 17:302–317

    Article  CAS  Google Scholar 

  • Rezk BM, Haenen GRMM, Vijgh WJFV, Bast A (2002) The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Biochem. Biophys Res Commun 2954:9–13

    Article  Google Scholar 

  • Rifaai RH, El-Tahawy NF, Saber EA, Ahmed R (2012) Effect of quercetin on the endocrine pancreas of the experimentally induced diabetes in male albino rats: a histological and immunohistochemical study. J Diabetes Metab 3:182

  • Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phloridzin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515

    Article  CAS  Google Scholar 

  • Rupasinghe HPV, Kathirvel P, Huber GM (2011) Ultrasonication-assisted solvent extraction of quercetin glycosides from ‘idared’ apple peels. Molecules 16:9783–9791

    Article  CAS  Google Scholar 

  • Sanchez-Rabaneda F, Jauregui O, Lamuela-Raventos R, Viladomat F, Bastida J, Codina C (2004) Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Commun Mass Spectrom 18:553–563

    Article  CAS  Google Scholar 

  • Savatovic SM, Cetkovic GS, Dilas SM, Tumbas VT, Canadanovic-Brunet JM, Cetojevic-Simin DD, Mandic AI (2008) Antioxidant and antiproliferative activity of granny smith apple pomace. Apteff 39:201–212

    Article  CAS  Google Scholar 

  • Sekhon-Loodu S, Warnakulasuriya SN, Rupasinghe HPV, Shahidi F (2013) Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation. Food Chem 140:189–196

    Article  CAS  Google Scholar 

  • Serra AT, Rocha J, Sepodes B, Matias AA, Feliciano RP, Carvalho A, Bronze MR, Duarte CM, Figueira ME (2012) Evaluation of cardiovascular protective effect of different apple varieties –correlation of response with composition. Food Chem 135:2378–2386

    Article  CAS  Google Scholar 

  • Shang XJ, Yao G, Ge JP, Sun Y, Teng WH, Huang YF (2009) Procyanidin induces apoptosis and necrosis of prostate cancer cell line PC-3 in a mitochondrion-dependent manner. J Androl 30:122–126

    Article  CAS  Google Scholar 

  • Shibusawa Y, Yanagida A, Ito A, Ichihashi K, Shindo H, Ito Y (2000) High-speed counter-current chromatography of apple procyanidins. J Chromatogr A 886:65–73

    Article  CAS  Google Scholar 

  • Stangl V, Lorenz M, Ludwig A, Grimbo N, Guether C, Sanad W, Ziemer S, Martus P, Baumann G, Stangl K (2005) The flavonoid phloretin suppresses stimulated expression of endothelial adhesion molecules and reduces activation of human platelets. J Nutr 135:172–178

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  CAS  Google Scholar 

  • Tchantchou F, Chan A, Kifle L, Ortiz D, Shea TB (2005) Apple juice concentrate prevents oxidative damage and impaired maze performance in aged mice. J Alzheimers Dis 8:283–287

    CAS  Google Scholar 

  • Tenore GC, Campiglia P, Ritieni A, Novellino E (2013) In vitro bioaccessibility, bioavailability and plasma protein interaction of polyphenols from annurca apple (M. pumila miller cv annurca). Food Chem 141:3519–3524

    Article  CAS  Google Scholar 

  • Vazquez-Prieto MA, Bettaieb A, Haj FG, Fraga CG, Oteiza PI (2012) (−)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3 T3-L1 adipocytes. Arch Biochem Biophys 527:113–118

    Article  CAS  Google Scholar 

  • Veeriah S, Hofmann T, Glei M, Dietrich H, Will F, Schreier P, et al. (2007) Apple polyphenols and products formed in the gut differently inhibit survival of human cell lines derived from colon adenoma (LT97) and carcinoma (HT29). J Agric Food Chem 55:2892–2900

    Article  CAS  Google Scholar 

  • Verdu CF, Gatto VJ, Freuze I, Richomme P, Laurens F, Guilet D (2013) Comparison of two methods, UHPLC-UV and UHPLC-MS/MS, for the quantification of polyphenols in cider apple juices. Molecules 18:10213–10227

    Article  CAS  Google Scholar 

  • Vieira FGK, Borges GDSC, Copetti C, Pietro PFD, Nunes EDC, Fett R (2011) Phenolic compounds and antioxidant activity of the apple flesh and peel of eleven cultivars grown in Brazil. Sci Hort 128:261–266

    Article  CAS  Google Scholar 

  • Viggiano A, Viggianoa A, Monda M, Turco I, Incarnato L, Vinno V, Viggianoa E, Baccari ME, Luca BD (2006) Annurca apple-rich diet restores long-term potentiation and induces behavioral modifications in aged rats. Exp Neurol 199:354–361

    Article  CAS  Google Scholar 

  • Walia M, Kumar S, Agnihotria VK (2015) UPLC-PDA quantification of chemical constituents of two different varieties (golden and royal) of apple leaves and their antioxidant activity. J Sci Food Agric. doi:10.1002/jsfa.7239

    Google Scholar 

  • Wang H, Wang D, Pu Y, Pan D, Guan W, Ma Y (2012) Phloretin induced apoptosis of human hepatoma cells SMMC-7721 and its correlative biological mechanisms. African J Pharmacy Pharmacol 6:648–659

    CAS  Google Scholar 

  • WHO (2014)Fact Sheet, The top 10 causes of death.

  • Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peel. J Agric Food Chem 51:609–614

    Article  CAS  Google Scholar 

  • Xu K, Lu H, Qu B, Shan H, Song J (2010) High-speed counter-current chromatography preparative separation and purification of phloretin from apple tree bark. Sep Purif Technol 72:406–409

    Article  Google Scholar 

  • Yang J, Liu RH (2009) Synergistic effect of apple extracts and quercetin 3-β-D-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J Agric Food Chem 57:8581–8586

    Article  CAS  Google Scholar 

  • Ye X, Krohn RL, Liu W, Joshi SS, Kuszynski CA, McGinn TR, Bagchi M, Preuss HG, Stohs SJ, Bagchi D (1999) The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol Cell Biochem 196:99–108

    Article  CAS  Google Scholar 

  • Yue T, Shao D, Yuan Y, Wang Z, Qiang C (2012) Ultrasound-assisted extraction, HPLC analysis, and antioxidant activity of polyphenols from unripe apple. J Sep Sci 35:2138–2145

  • Zhao H, Yakar S, Gavrilova O, Sun H, Zhang Y, Kim H, Setser J, Jou W, LeRoith D (2004) Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. Diabetes 53:2901–2909

    Article  CAS  Google Scholar 

  • Zheng CQ, Qiao B, Wang M, Tao Q (2013) Mechanisms of apple polyphenols-induced proliferation inhibiting and apoptosis in a metastatic oral adenoid cystic carcinoma cell line. Kaohsiung J Med Sci 29:239–245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director, CSIR-IHBT Palampur for continuous encouragement and for providing necessary facilities. Authors also acknowledge Council of Scientific and Industrial Research, New Delhi (AGROPATHY Network Project) and Department of Biotechnology, Ministry of Science and Technology, GOI, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Bhushan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Research highlights

• Potential of phenolic present in different parts of apple fruit as dietary polyphenols.

• Assessment of different analytical methods for identification of phenolics

• Extraction and analysis of phenolics

• Deciphering the biological properties of apple phenolics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Bhushan, S. Apple phenolics as nutraceuticals: assessment, analysis and application. J Food Sci Technol 53, 1727–1738 (2016). https://doi.org/10.1007/s13197-015-2093-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-2093-8

Keywords

Navigation