Skip to main content

Advertisement

Log in

Bacteriophage biocontrol of foodborne pathogens

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Bacteriophages are viruses that only infect bacterial cells. Phages are categorized based on the type of their life cycle, the lytic cycle cause lysis of the bacterium with the release of multiple phage particles where as in lysogenic phase the phage DNA is incorporated into the bacterial genome. Lysogeny does not result in lysis of the host. Lytic phages have several potential applications in the food industry as biocontrol agents, biopreservatives and as tools for detecting pathogens. They have also been proposed as alternatives to antibiotics in animal health. Two unique features of phage relevant for food safety are that they are harmless to mammalian cells and high host specificity, keeping the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about ‘edible viruses’. This article reviews in detail the application of phages for the control of foodborne pathogens in a process known as “biocontrol”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedon ST (1999) Bacteriophage T4 resistance to lysis-inhibition collapse. Genet Res 74:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    Article  CAS  PubMed  Google Scholar 

  • Ackermann HW (2009) Phage classification and characterization. In: Bacteriophages. Humana press, pp 127–140

  • Ackermann HW, DuBow MS (1987) Viruses of prokaryotes: general properties of bacteriophage. CRC Press, Boca Raton

    Google Scholar 

  • Ackermann HW, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157(10):1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Atterbury RJ (2009) Bacteriophage biocontrol in animals and meat products. Microb Biotechnol 2:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigot B, Lee WJ, McIntyre L et al (2011) Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 28(8):1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Bigwood T, Hudson JA, Billington C (2009) Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiol Lett 291:59–64

    Article  CAS  PubMed  Google Scholar 

  • Borysowski J, Weber-Dabrowska B, Gorski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 231:366–377

    Article  CAS  Google Scholar 

  • Bruttin A, Brussow H (2005) Human volunteers receiving escherichia coli phage T4 orally: a safety test of phage therapy. Am Soc Microbiol 49:2874–2878

    CAS  Google Scholar 

  • Bueno E, Garcıa P, Martınez B, Rodrıguez A (2012) Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. Int J Food Microbiol 158(1):23–27

    Article  PubMed  Google Scholar 

  • Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43(3):301–312

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CM, Gannon BW, Halfhide DE, Santos SB, Hayes CM, Roe JM, Azeredo J (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of campylobacter coli and campylobacter jejuni in chickens. BMC Microbiol 10(1):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Civerolo EL, Kiel HL (1969) Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59:1966–1967

    Google Scholar 

  • Coffey B, Mills S, Coffey A, McAuliffe O, Ross RP (2010) Phage and their lysins as biocontrol agents for food safety applications. Ann Rev Food Sci Technol 1:449–468

    Article  CAS  Google Scholar 

  • Delbruck M (1940) The growth of bacteriophage and lysis of the host. J Gen Physiol 23:643–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delisle AL, Levin RE (1969) Bacteriophages of psychrophilic pseudomonads. I. Host range of phage pools active against fish spoilage and fish-pathogenic pseudomonads. Anton Leeuw 35:307–317

    Article  CAS  Google Scholar 

  • DuPont HL (2007) The growing threat of foodborne bacterial enteropathogens of animal origin. Clin Infect Dis 45:1353–1361

    Article  PubMed  Google Scholar 

  • During K, Porsch P, Fladung M, Lorz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3:587–598

    Article  Google Scholar 

  • Dykes GA, Moorhead SM (2002) Combined antimicrobial effect of nisin and a listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef. Int J Food Microbiol 73(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • El-Shibiny A, Scott A, Timms A, Metawea Y, Connerton P, Connerton I (2009) Application of a group II campylobacter bacteriophage to reduce strains of Campylobacter jejuni and campylobacter coli colonizing broiler chickens. J Food Prot 72(4):733–740

    Article  CAS  PubMed  Google Scholar 

  • Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int J Med Microbiol 300:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaeng S, Scherer S, Neve H, Loessner MJ (2000) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol 66:2951–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill J, Abedon ST (2003) Bacteriophage ecology and plants. APSnet Feature

  • Gill J, Sabour PM, Leslie KE, Griffiths MW (2006) Bovine whey proteins inhibit the interaction of staphylococcus aureus and bacteriophage K. J Appl Microbiol 101(2):377–386

    Article  CAS  PubMed  Google Scholar 

  • Greer GG (1982) Psychrotrophic bacteriophages for beef spoilage pseudomonads. J Food Prot 45:1318–1325

    Article  Google Scholar 

  • Greer GG (1988) Effects of phage concentration, bacterial density, and temperature on phage control of beef spoilage. J Food Sci 53:1226–1227

    Article  Google Scholar 

  • Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Prot 68(5):1102–1111

    Article  PubMed  Google Scholar 

  • Guenther S, Loessner MJ (2011) Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red- smear cheeses. Bacteriophage 1(2):94–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenther S, Herzig O, Fieseler L, Klumpp J, Loessner MJ (2012) Biocontrol of salmonella typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154(1–2):66–72

    Article  PubMed  Google Scholar 

  • Guttman B, Raya R, Kutter E (2005) Basic phage biology. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, p 28

    Google Scholar 

  • Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11(1):58–68

    Article  CAS  PubMed  Google Scholar 

  • Holck A, Berg J (2009) Inhibition of Listeria monocytogenes in cooked ham by virulent bacteriophages and protective cultures. Appl Environ Microbiol 75(21):6944–6946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooton SPT, Atterbury RJ, Connerton IF (2011) Application of a bacteriophage cocktail to reduce salmonella typhimurium U288 contamination on pig skin. Int J Food Microbiol 151(2):157–163

    Article  PubMed  Google Scholar 

  • Ikeda H, Tomizawa J (1965) Transducing fragments in generalized transduction by phage P1. I. Molecular origin of the fragments. J Mol Biol 14:85–109

    Article  CAS  PubMed  Google Scholar 

  • Kasman LM, Kasman A, Westwater C, Dolan J, Schmidt MG, Norris JS (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J Virol 76:5557–5564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W-S, Salm H, Geider K (2004) Expression of bacteriophage fEa1h lysozyme in escherichia coli and its activity in growth inhibition of Erwinia amylovora. Microbiology 150:2707–2714

    Article  CAS  PubMed  Google Scholar 

  • Kim KP, Klumpp J, Loessner MJ (2007) Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol 115:195–203

    Article  CAS  PubMed  Google Scholar 

  • Kutter E, Sulakvelidze A (2005) Introduction. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, p 1

    Google Scholar 

  • Leverentz B, Conway WS, Alavidze Z (2001) Examination of bacteriophage as a biocontrol method for salmonella on fresh-cut fruit: a model study. J Food Prot 64(8):1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Leverentz B, Conway WS, Camp MJ et al (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69(8):4519–4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leverentz B, Conway WS, Janisiewicz W, Camp MJ (2004) Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot 67(8):1682–1686

    Article  PubMed  Google Scholar 

  • Martınez B, Obeso JM, Rodrıguez A, Garcıa P (2008) Nisin- bacteriophage crossresistance in Staphylococcus aureus. Int J Food Microbiol 122(3):253–258

    Article  CAS  PubMed  Google Scholar 

  • Maura D, Debarbieux L (2011) Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl Microbiol Biotechnol 90:851–885

    Article  CAS  PubMed  Google Scholar 

  • McIntyre L, Hudson JA, Billington C, Withers H (2007) Biocontrol of bacteria: past, present and future strategies. Food N Z 7:25–32

    Google Scholar 

  • Modi R, Hirvi Y, Hill A, Griffiths MW (2001) Effect of phage on survival of salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Prot 64(7):927–933

    Article  CAS  PubMed  Google Scholar 

  • Monk AB, Rees CD, Barrow P, Hagens S, Harper DR (2010) Bacteriophage applications: where are we now? Lett Appl Microbiol 51:363–369

    Article  CAS  PubMed  Google Scholar 

  • Montanez-Izquierdo VY, Salas-Vazquez DI, Rodrıguez-Jerez JJ (2012) Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control 23:470–477

    Article  Google Scholar 

  • Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116

    Article  Google Scholar 

  • O’Flaherty S, Coffey A, Meaney WJ, Fitzgerald GF, Ross RP (2005) Inhibition of bacteriophage K proliferation on staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41(3):274–279

    Article  PubMed  Google Scholar 

  • O’Flynn G, Ross RP, Fitzgerald GF, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157: H7.Applied and. Environ Microbiol 70(6):3417–3424

    Article  CAS  Google Scholar 

  • Obeso JM, Martınez B, Rodrıguez A, Garcıa P (2008) Lytic activity of the recom- binant staphylococcal bacteriophage FH5 endolysin active against staphylococcus aureus in milk. Int J Food Microbiol 128:212–218

    Article  CAS  PubMed  Google Scholar 

  • Patel J, Sharma M, Millner P, Calaway T, Singh M (2011) Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis 8(4):541–546

    Article  PubMed  Google Scholar 

  • Ravensdale M, Blom TJ, Gracia-Garza A, Svircev AM, Smith RJ (2007) Bacteriophages and the control of Erwinia carotovora subsp. carotovora. Can J Plant Pathol 29(2):121–130

    Article  Google Scholar 

  • Rosenquist H, Nielsen NL, Sommer HM, Nørrung B, Christensen BB (2003) Quantitative risk assessment of human campylobacteriosis associated with thermophilic campylobacter species in chickens. Int J Food Microbiol 83(1):87–103

    Article  PubMed  Google Scholar 

  • Roy B, Ackermann HW, Pandian S, Picard G, Goulet J (1993) Biological inactivation of adhering Listeria monocytogenes by listeriaphages and a quaternary ammonium compound. Appl Environ Microbiol 59:2914–2917

    PubMed  PubMed Central  CAS  Google Scholar 

  • Santander J, Robeson J (2007) Phage-resistance of salmonella enterica serovar enteritidis and pathogenesis in Caenorhabditis elegans is mediated by the lipopolysaccharide. Electron J Biotechnol 10:627–632

    Article  Google Scholar 

  • Sharma M, Patel JR, Conway WS, Ferguson S, Sulakvelidze A (2009) Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce. J Food Prot 72(7):1481–1485

    Article  PubMed  Google Scholar 

  • Sheng H, Knecht HJ, Kudva IT, Hovde CJ (2006) Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl Environ Microbiol 72(8):5359–5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillankorva SM, Oliveira H, Azeredo J (2012) Bacteriophages and their role in food safety. Int J Microbiol 2012:1–13

    Article  Google Scholar 

  • Siringan P, Connerton PL, Payne RJH, Connerton IF (2011) Bacteriophage- mediated dispersal of campylobacter jejuni biofilms. Appl Environ Microbiol 77(10):3320–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni A, Nannapaneni R, Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage listex p100. Foodborne Pathog Dis 7(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Strauch E, Hammerl J, Hertwig S (2007) Bacteriophages: new tools for safer food? J Verbr Lebensm 2:138–143

    Article  Google Scholar 

  • Tabla R, Martínez B, Rebollo JE, González J, Ramírez MR, Roa I, Rodríguez A, García P (2012) Bacteriophage performance against staphylococcus aureus in milk is improved by high hydrostatic pressure treatments. Int J Food Microbiol 156(3):209–213

    Article  CAS  PubMed  Google Scholar 

  • Tarahovsky YS, Ivanitsky GR, Khusainov AA (1994) Lysis of escherichia coli cells induced by bacteriophage T4. FEMS Microbiol Lett 122:195–199

    Article  CAS  PubMed  Google Scholar 

  • Tomat D, Mercanti Q, Balague C, Quiberoni A (2013) Phage biocontrol of enteropathogenic and Shiga toxin-producing escherichia coli during milk fermentation. Lett Appl Microbiol 57:3–10

    Article  CAS  PubMed  Google Scholar 

  • Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F (2011) Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol 145(1):37–42

    Article  PubMed  Google Scholar 

  • Wagenaar JA, Bergen MAPV, Mueller MA, Wassenaar TM, Carlton RM (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109(3–4):275–283

    Article  PubMed  Google Scholar 

  • Ye J, Kostrzynska M, Dunfield K, Warriner K (2009) Evaluation of a biocontrol preparation consisting of enterobacter asburiae JX1 and a lytic bacteriophage cocktail to suppress the growth of salmonella javiana associated with tomatoes. J Food Prot 72(11):2284–2292

    Article  PubMed  Google Scholar 

  • Ye J, Kostrzynska M, Dunfield K, Warriner K (2010) Control of salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages. J Food Prot 73(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Yoong P, Schuch R, Nelson D, Fischetti VA (2004) Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 186:4808–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang R, Bao H (2013) Phage inactivation of foodborne Shigella on ready- to-eat spiced chicken. Poult Sci 92:211–217

    Article  PubMed  Google Scholar 

  • Zimmer M, Vukov N, Scherer S, Loessner MJ (2002) The murein hydrolase of the bacteriophage j3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber S, Boissin-Delaporte C, Michot L, Iversen C, Diep B, Brussow H et al (2008) Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb Biotechnol 1:532–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday S. Annapure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazi, M., Annapure, U.S. Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol 53, 1355–1362 (2016). https://doi.org/10.1007/s13197-015-1996-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1996-8

Keywords

Navigation