Skip to main content
Log in

Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Seed cake protein (SCP) from Camellia oleifera was hydrolyzed by five commercial proteases (Flavorzyme, Trypsin, Neutrase, Papain, Alcalase). Amino acid composition, molecular weight distribution, antioxidant activity and functional property of the seed cake protein hydrolysates (SCPH) were investigated. Enzymatic hydrolysis improved protein solubility significantly but impaired the foaming and emulsifying property. Hydrolysate generated by alcalase had the highest hydrolysis degree (DH) and antioxidant activity, and displayed excellent protein solubility over wide range of pH, while hydrolysate prepared by flavorzyme showed better copper chelating capacity and emulsifying stability with low molecular weight distribution. Trypsin-treated SCPH showed better foaming property than original protein. The results indicated that enzyme type greatly influenced the molecular weight, functional property and antioxidant activity of SCPH. It was also found that electing appropriate protease and controlling the DH could be enhanced or reduced functional property according to actual applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bandyopadhyay K, Ghosh S (2002) Preparation and characterization of papain-modified sesame (Sesamum indicum L.) protein isolates. J Agric Food Chem 50:6854–6857

    Article  CAS  Google Scholar 

  • Benjakul S, Morrissey MT (1997) Protein hydrolysates from Pacific whiting solid wastes. J Agric Food Chem 45:3423–3430

    Article  CAS  Google Scholar 

  • Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Jacinto-Hernández C, Alaiz M, Girón-Calle J, Vioque J, Dávila-Ortiz G (2012) Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem 135:1789–1795

    Article  CAS  Google Scholar 

  • Chabanon G, Chevalot I, Framboisier X, Chenu S, Marc I (2007) Hydrolysis of rapeseed protein isolates: kinetics, characterization and functional properties of hydrolysates. Process Biochem 42:1419–1428

    Article  CAS  Google Scholar 

  • Choonpicharn S, Jaturasitha S, Rakariyatham N, Suree N, Niamsup H (2014) Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. J Food Sci Technol :1–6. doi:10.1007/s13197-014-1581-6

  • Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674–677

    Article  CAS  Google Scholar 

  • Dey S, Dora K (2014) Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus). J Food Sci Technol 51:449–457

    Article  CAS  Google Scholar 

  • Fiaschi T, Chiarugi P (2012) Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol. doi:10.1155/2012/762825

    Google Scholar 

  • FitzGerald RJ, O’Cuinn G (2006) Enzymatic debittering of food protein hydrolysates. Biotechnol Adv 24:234–237

    Article  CAS  Google Scholar 

  • Foegeding EA, Davis JP, Doucet D, McGuffey MK (2002) Advances in modifying and understanding whey protein functionality. Trends Food Sci Technol 13:151–159

    Article  CAS  Google Scholar 

  • Gbogouri G, Linder M, Fanni J, Parmentier M (2004) Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J Food Sci 69:C615–C622

    Article  CAS  Google Scholar 

  • He SN, Gu Y (1982) The comprehensive utilization of camellia fruits. Am Camellia Yearbk 37:104–107

    Google Scholar 

  • Intarasirisawat R, Benjakul S, Visessanguan W (2012) Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chem 135:3039–3048

    Article  CAS  Google Scholar 

  • Ito N, Fukushima S, Tsuda H (1985) Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit Rev Toxicol 15:109–150

    Article  Google Scholar 

  • Jamdar S, Rajalakshmi V, Pednekar M, Juan F, Yardi V, Sharma A (2010) Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem 121:178–184

    Article  CAS  Google Scholar 

  • Klompong V, Benjakul S, Kantachote D, Shahidi F (2007) Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 102:1317–1327

    Article  CAS  Google Scholar 

  • Kong X, Zhou H, Qian H (2007) Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chem 102(3):759–763

    Article  CAS  Google Scholar 

  • Li X, Shen S, Deng J, Li T, Ding C (2014) Antioxidant activities and functional properties of tea seed protein hydrolysates (Camellia oleifera Abel.) influenced by the degree of enzymatic hydrolysis. Food Sci Biotechnol 23:2075–2082

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mannheim A, Cheryan M (1992) Enzyme-modified proteins from corn gluten meal: preparation and functional properties. J Am Oil Chem Soc 69:1163–1169

    Article  CAS  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  Google Scholar 

  • McCann KB, Shiell BJ, Michalski WP, Lee A, Wan J, Roginski H, Coventry MJ (2006) Isolation and characterisation of a novel antibacterial peptide from bovine α S1-casein. Int Dairy J 16:316–323

    Article  CAS  Google Scholar 

  • Moure A, Sineiro J, Domínguez H, Parajó JC (2006) Functionality of oilseed protein products: a review. Food Res Int 39:945–963

    Article  CAS  Google Scholar 

  • Mutilangi W, Panyam D, Kilara A (1996) Functional properties of hydrolysates from proteolysis of heat‐denatured whey protein isolate. J Food Sci 61:270–275

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Panyam D, Kilara A (1996) Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci Technol 7:120–125

    Article  CAS  Google Scholar 

  • Rodríguez Patino JM, Miñones Conde J, Linares HM, Pedroche Jiménez JJ, Carrera Sánchez C, Pizones V, Rodríguez FM (2007) Interfacial and foaming properties of enzyme-induced hydrolysis of sunflower protein isolate. Food Hydrocoll 21:782–793

    Article  Google Scholar 

  • Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31:1949–1956

    Article  CAS  Google Scholar 

  • Sun Q, Luo Y, Shen H, Li X, Yao L (2012) Purification and characterisation of a novel antioxidant peptide from porcine haemoglobin hydrolysate. Int J Food Sci Technol 47:148–154

    Article  CAS  Google Scholar 

  • Tang C-H, Wang X-S, Yang X-Q (2009) Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chem 114:1484–1490

    Article  CAS  Google Scholar 

  • Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Millán F (2000) Partially hydrolyzed rapeseed protein isolates with improved functional properties. J Am Oil Chem Soc 77:447–450

    Article  CAS  Google Scholar 

  • Wu H-C, Chen H-M, Shiau C-Y (2003) Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int 36:949–957

    Article  CAS  Google Scholar 

  • Zhang M-N, Huang G-R, Jiang J-X (2014) Iron binding capacity of dephytinised soy protein isolate hydrolysate as influenced by the degree of hydrolysis and enzyme type. J Food Sci Technol 51:994–999

    Article  CAS  Google Scholar 

  • Zhao G, Liu Y, Zhao M, Ren J, Yang B (2011) Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chem 127:1438–1443

    Article  CAS  Google Scholar 

  • Zhao Q, Xiong H, Selomulya C, Chen XD, Zhong H, Wang S, Sun W, Zhou Q (2012) Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chem 134:1360–1367

    Article  CAS  Google Scholar 

  • Zhong F, Liu J, Ma J, Shoemaker CF (2007) Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res Int 40:661–667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by Department of Science and Technology Support Project (2013NZ0047) of Sichuan Province. The authors sincerely thank for the assistance of Xuejing Jia and Haoran Cheng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbang Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Deng, J., Shen, S. et al. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake . J Food Sci Technol 52, 5681–5690 (2015). https://doi.org/10.1007/s13197-014-1693-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1693-z

Keywords

Navigation