Skip to main content
Log in

Optimization of processing conditions to improve antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

A central composite design (CCD) was used to evaluate the effects of fermentation temperature (20–30 ºC) and kefir grains amount (2–8%w/v) on total phenolic content and antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains. The response surface methodology (RSM) showed that the significant second-order polynomial regression equation with high R2 (>0.86) was successfully fitted for all response as function of independent variable. The overall optimum region was found to be at the combined level of 7.56%w/v kefir grains and temperature of 24.82 ºC with the highest value for total phenolic content (TPC) and antioxidant activities. At this optimum point TPC, 1, 1-Diphenyl-2-picrylhydrazyl radical scavenging, metal chelating effect, reducing power, inhibition of linoleic acid autoxidation and inhibition of ascorbate autoxidation were 165.02 mgGA/l, 0.38 ml/1 ml, 0.757 (absorbance at 700 nm), 46.12 %, 65.33 % and 21 %, respectively. No significant difference (p < 0.05) was found between actual values and predicated values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baş D, Boyaci IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Article  Google Scholar 

  • Boskov-Hansen H, Andersen MF, Nielsen L, Back-Knudsen KE, Meyer AS, Christens LP et al (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread making. Eur Food Res Technol 214:33–42

    Article  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28:25–30

    CAS  Google Scholar 

  • Chatterton DEW, Smithers G, Roupas P, Brodkorb A (2006) Bioactivity of β-lactoglobulin and α-lactalbumin-Technological implications for processing. Int Dairy J 16:1229–1240

    Article  CAS  Google Scholar 

  • Chien HL (2004) Change of isoflavones contents in cultured soymilk fermented with lactic acid bacteria and bifidobacteria. M.S. Thesis, National Taiwan University, Taipei, Taiwan

  • Coda R, Larena A, Trani A, Gobbetti M, Cagno RD (2012) Yogurt-like beverages made of a mixture of cereals, soy and grape must: microbiology, texture, nutritional and sensory properties. Int J Food Microbiol 155:120–127

    Article  CAS  Google Scholar 

  • Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674–677

    Article  CAS  Google Scholar 

  • Dordević TM, Šiler-Marinković SS, Dimitrijević-Brankovic SI (2010) Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem 119:957–963

    Article  Google Scholar 

  • Hernández-Ledesma B, Miralles B, Amigo L, Ramos M, Recio I (2005) Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J Sci Food Agric 85:1041–1048

    Article  Google Scholar 

  • Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. CRC Crit Rev Toxicol 23:21–48

    Article  CAS  Google Scholar 

  • Khanizadeh S, Tsao R, Rekika D, Yang R, Charles MT, Rupasinghe HPV (2008) Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. J Food Compos Anal 21:396–401

    Article  CAS  Google Scholar 

  • La Riviére JWM, Kooiman P, Schmidt K (1967) Kefiran, a novel polysaccharide produced in the kefir grain by Lactobacillus brevis. Arch Mikrobiol 59:269–278

    Article  Google Scholar 

  • Lin MY, Chang FJ (2000) Antioxidative effects of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ACTT 4356. Dig Dis Sci 45:1617–1622

    Article  CAS  Google Scholar 

  • Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47:1460–1466

    Article  CAS  Google Scholar 

  • Liu JR, Chen MJ, Lin CW (2005) Antimutagenic and antioxidant properties of milk kefir and soy-milk kefir. J Agric Food Chem 53:2467–2474

    Article  CAS  Google Scholar 

  • Lu Y, Foo LY (2000) Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 68:81–85

    Article  CAS  Google Scholar 

  • Marazza JA, Nazareno MA, Giori GSD, Garro MS (2012) Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J Funct Food 4:594–601

    Article  CAS  Google Scholar 

  • Mason RL, Richard F, Gunst RF, Hess JL (2003) Statistical design andanalysis of experiments with applications to engineering and science. Wiley, Hoboken

    Google Scholar 

  • Mishra OP, Kovachic GB (1984) Inhibition of the autoxidation of ascorbate and norepinephrine by extracts of Clostridium butyricum, Megasphaera elsdenii and Escherichia coli. Life Sci 35:849–854

    Article  CAS  Google Scholar 

  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol Med 22:861–870

    Article  CAS  Google Scholar 

  • Mousavi ZE, Mousavi SM, Razavi SH, Emam-Djomeh Z, Kiani H (2011) Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J Microbiol Biotechnol 27:123–128

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on product of browning reaction prepared from glucose amine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Pena-Ramos EA, Xiong YL (2001) Antioxidative activity of whey protein hydrolysates in a liposomal system. J Dairy Sci 84:2577–2583

    Article  CAS  Google Scholar 

  • Powell JE, Witthuhn RC, Todorov SD, Dicks LMT (2007) Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int Dairy J 17:190–198

    Article  CAS  Google Scholar 

  • Reddy NR, Pierson MD (1994) Reduction in anti-nutritional and toxic components in plant foods by fermentation. Food Res Int 27:281–290

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure antioxidant activity relationships of flavoniods and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  Google Scholar 

  • Rival SG, Fornaroli S, Boeriu CG, Wichers HJ (2001) Caseins casein hydrolysates. 1. Lipoxygenase inhibitory properties. J Agric Food Chem 49:287–294

    Article  CAS  Google Scholar 

  • Shahidi F, Wanasundara UN, Amarowicz R (1994) Natural antioxidants from low-pungency mustard fiour. Food Res Int 27:489–493

    Article  CAS  Google Scholar 

  • Simic MG (1988) Mechanisms of inhibition of free-radical processed in mutagenesis and carcinogensis. Mutat Res 202:377–386

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JAJ (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11:128–131

    Article  CAS  Google Scholar 

  • Sun YP, Chou Ch, Yu RCh (2009) Antioxidant activity of lactic-fermented Chinese cabbage. Food Chem 115:912–917

  • Tong LM, Sasaki S, Julian McClements D, Decker EA (2000) Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J Agric Food Chem 48:1473–1478

    Article  CAS  Google Scholar 

  • Voung T, Martin L, Matar C (2006) Antioxidant activity of fermented berry juices and their effects on nitric oxide and tumor necrosis factor-alpha production in macrophages 264.7 gamma NO (-) cell line. J Food Biochem 30:249–268

    Article  Google Scholar 

  • Wang YC, Yu RC, Chou CC (2006) Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol 23:128–135

    Article  Google Scholar 

  • Wong PYY, Kitts DD (2003) Chemistry of buttermilk solid antioxidant activity. J Dairy Sci 86:1541–1547

    Article  CAS  Google Scholar 

  • Yang JH, Mau JL, Ko PT, Huang LC (2000) Antioxidant properties of fermented soybean broth. Food Chem 71:249–254

    Article  CAS  Google Scholar 

  • Yen GC, Duh PD, Chuang DY (2000) Antioxidant activity of anthraquinones and anthrone. Food Chem 70(4):437–441

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the food science department microbiology and chemistry laboratory of University of Tehran for providing the laboratory facilities for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Khodaiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabokbar, N., Khodaiyan, F. & Moosavi-Nasab, M. Optimization of processing conditions to improve antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains. J Food Sci Technol 52, 3422–3432 (2015). https://doi.org/10.1007/s13197-014-1397-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1397-4

Keywords

Navigation