Skip to main content

Advertisement

Log in

Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Withania somnifera (Ashwagandha, WS) or Indian ginseng possesses multiple pharmacological properties which are mainly attributed to the active constituents, withanolides. Despite its extensive usage as a memory enhancer and a nerve tonic, few attempts have been made to ascertain its usage in the management of Parkinson’s disease. In the present study, we investigated the neuroameliorative effects of WS in a rotenone (ROT) model of Drosophila melanogaster (Oregon-K). Initially, we ascertained the ability of WS-enriched diet (0–0.05 %) to protect against ROT induced lethality and locomotor phenotype in adult male flies. Further, employing a co-exposure paradigm, we investigated the propensity of WS to offset ROT-induced oxidative stress, mitochondrial dysfunctions and neurotoxicity. WS conferred significant protection against ROT-induced lethality, while the survivor flies exhibited improved locomotor phenotype. Biochemical investigations revealed that ROT-induced oxidative stress was significantly diminished by WS enrichment. WS caused significant elevation in the levels of reduced GSH/non-protein thiols. Furthermore, the altered activity levels of succinate dehydrogenase, MTT, membrane bound enzymes viz., NADH-cytochrome-c reductase and succinate-cytochrome-c reductase were markedly restored to normalcy. Interestingly, ROT-induced perturbations in cholinergic function and depletion in dopamine levels were normalized by WS. Taken together these data suggests that the neuromodulatory effect of WS against ROT- induced neurotoxicity is probably mediated via suppression of oxidative stress and its potential to attenuate mitochondrial dysfunctions. Our further studies aim to understand the underlying neuroprotective mechanisms of WS and withanolides employing neuronal cell models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

WS:

Withania somnifera

ROT:

Rotenone

LPO:

Lipid peroxidation

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

MDA:

Malondialdehyde

DCF:

2′, 7′-dichlorofluorescein diacetate

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH (2012) Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochem Rev 11:97–112. doi:10.1007/s11101-011-9221-5

    Article  CAS  Google Scholar 

  • Ahmad M, Saleem S, Ahmad AS et al (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147

    Article  Google Scholar 

  • Bhatnagar M, Sharma D, Salvi M (2009) Neuroprotective effects of Withania somnifera dunal: a possible mechanism. Neurochem Res 34:1975–1983. doi:10.1007/s11064-009-9987-7

    Google Scholar 

  • Cannon JR, Greenamyre JT (2010) Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog Brain Res 184:17–33. doi:10.1016/S0079-6123(10)84002-6

    Article  CAS  Google Scholar 

  • Chaudhuri KR, Martinez-Martin P, Brown RG et al (2007) The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord 22:1901–1911. doi:10.1002/mds.21596

    Article  Google Scholar 

  • Choudhary MI, Nawaz SA, Ul-Haq Z et al (2005) Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem Biophys Res Commun 334:276–287

    Article  CAS  Google Scholar 

  • Chulet R, Pradhan P (2009) A review on rasayana. Pharmacogn Rev 3:229

    Google Scholar 

  • Cicchetti F, Drouin-Ouellet J, Gross RE (2009) Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30:475–483. doi:10.1016/j.tips.2009.06.005

    Article  CAS  Google Scholar 

  • Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24:10993–10998. doi:10.1523/JNEUROSCI.2993-04.2004

    Article  CAS  Google Scholar 

  • Dalpiaz A, Filosa R, de Caprariis P et al (2007) Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Int J Pharm 336:133–139. doi:10.1016/j.ijpharm.2006.11.051

    Article  CAS  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398. doi:10.1038/35006074

    Article  CAS  Google Scholar 

  • Girish C, Muralidhara (2012) Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson’s disease. Neurotoxicology 33:444–456. doi:10.1016/j.neuro.2012.04.002

    Article  CAS  Google Scholar 

  • Gokul K, Manjunath MJ, Muralidhara (2012) Exploring the neuroprotective efficacy of Withania somnifera: a medicinal plant with diverse biological effects. RPMP Ethnomedicine and Therapeutic Validation 32:377–402

    Google Scholar 

  • Goldman JG, Stebbins GT, Bernard B et al (2012) Entorhinal cortex atrophy differentiates Parkinson’s disease patients with and without dementia. Mov Disord 27:727–734. doi:10.1002/mds.24938

    Article  Google Scholar 

  • Gupta GL, Rana AC (2007) Withania somnifera (Ashwagandha): a review. Pharmacogn Rev 1:129

    CAS  Google Scholar 

  • Guthenberg C, Alin P, Mannervik B (1985) Glutathione transferase from rat testis. Meth Enzymol 113:507–510

    Article  CAS  Google Scholar 

  • Heales SJR, Menzes A, Davey GP (2011) Depletion of glutathione does not affect electron transport chain complex activity in brain mitochondria: Implications for Parkinson disease and postmortem studies. Free Radic Biol Med 50:899–902. doi:10.1016/j.freeradbiomed.2010.11.032

    Article  CAS  Google Scholar 

  • Hirth F (2010) Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 9:504–523

    Article  CAS  Google Scholar 

  • Hosamani R, Muralidhara (2009) Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 30:977–985. doi:10.1016/j.neuro.2009.08.012

    Article  CAS  Google Scholar 

  • Hosamani R, Muralidhara (2010) Prophylactic treatment with Bacopa monnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster. Indian J Biochem Biophys 47:75–82

    CAS  Google Scholar 

  • Hosamani R, Ramesh SR, Muralidhara (2010) Attenuation of rotenone-induced mitochondrial oxidative damage and neurotoxicty in Drosophila melanogaster supplemented with creatine. Neurochem Res 35:1402–1412. doi:10.1007/s11064-010-0198-z

    Article  CAS  Google Scholar 

  • Kostyuk VA, Potapovich AI (1989) Superoxide–driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem Int 19:1117–1124

    CAS  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144:961–971. doi:10.1038/sj.bjp.0706122

    Article  CAS  Google Scholar 

  • Kulkarni SK, Dhir A (2008) Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry 32:1093–1105. doi:10.1016/j.pnpbp.2007.09.011

    Article  CAS  Google Scholar 

  • Kumar A, Kulkarni SK (2006) Protective effect of BR-16A, a polyherbal preparation against social isolation stress: possible GABAergic mechanism. Phytother Res 20:538–541. doi:10.1002/ptr.1873

    Article  Google Scholar 

  • Kumar P, Kumar A (2009) Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J Med Food 12:591–600. doi:10.1089/jmf.2008.0028

    Article  CAS  Google Scholar 

  • Laurent SR, O’Brien LM, Ahmad ST (2013) Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 246:382–390. doi:10.1016/j.neuroscience.2013.04.037

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Manjunath MJ, Muralidhara (2013) Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Cent Nerv Syst Agents Med Chem 13:43–56

    Article  CAS  Google Scholar 

  • Mokrasch LC, Teschke EJ (1984) Glutathione content of cultured cells and rodent brain regions: a specific fluorometric assay. Anal Biochem 140:506–509

    Article  CAS  Google Scholar 

  • Navarro A, Gomez C, López-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286:R505–R511. doi:10.1152/ajpregu.00208.2003

    Article  CAS  Google Scholar 

  • Navarro A, Sánchez Del Pino MJ, Gómez C et al (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 282:R985–R992. doi:10.1152/ajpregu.00537.2001

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Parihar MS, Hemnani T (2003) Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J Biosci 28:121–128

    Article  CAS  Google Scholar 

  • Patwardhan B, Gautam M (2005) Botanical immunodrugs: scope and opportunities. Drug Discov Today 10:495–502. doi:10.1016/S1359-6446(04)03357-4

    Article  CAS  Google Scholar 

  • Prasad SN, Muralidhara (2012) Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - its amelioration with spice active enrichment: relevance to neuropathy. Neurotoxicology 33:1254–1264. doi:10.1016/j.neuro.2012.07.006

    Article  CAS  Google Scholar 

  • Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83. doi:10.1016/j.ntt.2009.06.004

    Article  CAS  Google Scholar 

  • Saini N, Oelhafen S, Hua H, Georgiev O, Schaffner W, Bueler H (2010) Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiol Dis 40:82–92

    Article  CAS  Google Scholar 

  • Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M (2007) The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 12:473–481. doi:10.2478/s11658-007-0015-0

    Article  CAS  Google Scholar 

  • Santiago RM, Barbieiro J, Lima MMS et al (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 34:1104–1114. doi:10.1016/j.pnpbp.2010.06.004

    Article  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    CAS  Google Scholar 

  • Shinomol GK, Muralidhara (2008) Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice. Neurotoxicology 29:948–957. doi:10.1016/j.neuro.2008.09.009

    Article  CAS  Google Scholar 

  • Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25. doi:10.1016/j.freeradbiomed.2013.05.001

    Article  CAS  Google Scholar 

  • Spivey A (2011) Rotenone and paraquat linked to Parkinson’s disease: human exposure study supports years of animal studies. Environ Health Perspect 119:A259. doi:10.1289/ehp.119-a259a

    Article  Google Scholar 

  • Sudati JH, Vieira FA, Pavin SS et al (2013) Valeriana officinalis attenuates the rotenone-induced toxicity in Drosophila melanogaster. Neurotoxicology 37:118–126. doi:10.1016/j.neuro.2013.04.006

    Article  CAS  Google Scholar 

  • Swarnkar S, Singh S, Mathur R et al (2010) A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular co-ordination in rats. Toxicology 272:17–22. doi:10.1016/j.tox.2010.03.019

    Article  CAS  Google Scholar 

  • Tohda C, Kuboyama T, Komatsu K (2000) Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport 11:1981–1985

    Article  CAS  Google Scholar 

  • Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509

    Article  CAS  Google Scholar 

  • Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods enzymol 233:182

    Article  CAS  Google Scholar 

  • Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother 62:236–249. doi:10.1016/j.biopha.2008.01.017

    Article  CAS  Google Scholar 

  • Zhao J, Nakamura N, Hattori M et al (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the Director, CFTRI for his encouragement in this study. The first author (MJM) thanks the University Grants Commission (UGC), Government of India for the award of a research fellowship under the Rajeev Gandhi National Fellowship (RGNF) scheme.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjunath, M.J., Muralidhara Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster . J Food Sci Technol 52, 1971–1981 (2015). https://doi.org/10.1007/s13197-013-1219-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-013-1219-0

Keywords

Navigation