Skip to main content
Log in

Modelling moisture sorption characteristics in dried acid casein using connectionist paradigm vis-à-vis classical methods

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Six connectionist models are proposed to predict sorption (adsorption and desorption) characteristics at three temperatures, i.e., 25°, 35° and 45 °C over a water activity range of 0.11–0.97 in dried acid casein prepared from buffalo skim milk. Also, several conventional empirical sorption models were used for fitting the sorption data. The dataset comprised of 210 data points. The Error Back Propagation (EBP) learning algorithm with Bayesian Regularisation/Levenberg-Marquardt optimisation techniques as well as various combinations of connectionist network parameters was employed. The connectionist models predicted the adsorption characteristics with an accuracy ranging between 1.32 and 2.60 Root Mean Square percent error (RMS%) as compared to the best (among six conventional empirical models used) GAB model, which attained RMS% between 1.92 and 5.77. While for desorption characteristics, the connectionist models attained RMS% between 1.56 and 4.08 vis-à-vis the best (among six conventional empirical models used) GAB model with RMS% ranging between 1.4 and 5.01. Hence, the results revealed that the connectionist models outperformed the conventional empirical models and, generally, best described the experimental adsorption and desorption data for dried acid casein prepared from buffalo skim milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Mahasneh MA, Amer MMB, Rababah TM (2012) Modeling moisture sorption isotherms in roasted green wheat using least square regression and neural-fuzzy techniques. Food Bioprod Process 90:165–170

    Article  CAS  Google Scholar 

  • Aneja RP, Mathur BN, Chandan RC, Banerjee AK (2002) Technology of Indian milk products. Dairy India Yearbook Publishers, New Delhi

    Google Scholar 

  • Araromi DO, Olu-Arotiowa OA, Olajide JO, Afolabi TJ (2008) Neuro fuzzy modelling approach for prediction of equilibrium moisture characteristics and shelf life of corn flour. Int J Soft Comput 3:159–166

    CAS  Google Scholar 

  • Asbi BA, Bainu IC (1986) An equation for fitting moisture sorption isotherms of food proteins. J Agr Food Chem 34:494–496

    Article  CAS  Google Scholar 

  • BIS (1981) Determination of total nitrogen. In: Chem analysis of milk, handbook of food analysis, SP:18 part XI dairy products. Manak Bhavan, Bureau of Indian Standards, New Delhi.

  • Bizot H (1983) Using the GAB model to construct sorption isotherm. In: Jowitt R (ed) Physical properties of foods. Applied Science Publishers, London, pp 43–54

    Google Scholar 

  • Boquet R, Chirife J, Iglesias HA (1978) Equations for fitting water sorption isotherms of foods. III. Evaluation of various three parameter models. J Food Technol 14:527–534

    Article  Google Scholar 

  • Caurie M (1970) A new model equation for predicting safe storage moisture level for optimum stability of dehydrated foods. J Food Technol 5:301–307

    Article  Google Scholar 

  • Caurie M (1981) Derivation of full range moisture sorption isotherms. In: Rockland LB, Stewert GF (eds) Water activity - influences on food quality. Academic, New York, pp 63–87

    Chapter  Google Scholar 

  • Chayjan RA (2010) Modeling of sesame seed dehydration energy requirements by a soft-computing approach. Aust J Crop Sci 4:180–184

    Google Scholar 

  • Chayjan RA, Esna-Ashari M (2010a) Comparison between artificial neural networks and mathematical models for equilibrium moisture characteristics estimation in raisin. Agric Eng Int: CIGR Journal 12:158–166

    Google Scholar 

  • Chayjan RA, Esna-Ashari M (2010b) Modeling isosteric heat of soya bean for desorption energy estimation using neural network approach. Chil J Agr Res 70:616–625

    Article  Google Scholar 

  • Chayjan RA, Esna-Ashari M (2010c) Modeling of heat and entropy sorption of maize (cv. Sc704): neural network method. Res Agr Eng 56:69–76

    Google Scholar 

  • Chayjan RA, Esna-Ashari M (2011) Effect of moisture content on thermodynamic characteristics of grape: mathematical and artificial neural network modelling. Czech J Food Sci 29:250–259

    Google Scholar 

  • Correa PC, Goneli ALD, Junior PCA, de Oliveira GHH, Valente DSM (2010) Moisture sorption isotherms and isosteric heat of sorption of coffee in different processing levels. Int J Food Sci Tech 45:2016–2022

    Article  CAS  Google Scholar 

  • Delgando AE, Sun DW (2002) Desorption isotherms for cooked and cured beef and pork. J Food Eng 51:163–170

    Article  Google Scholar 

  • Demuth HB, Beale M (2004) User’s guide for Neural Network Toolbox for use with MATLAB. The MathWorks Inc., Natick

    Google Scholar 

  • Foresee FD, Hagan MT (1997) Gauss–Newton approximation to Bayesian regularization. Proc IEEE Int Jt Conf Neural Networ 3:1930–1935

    Google Scholar 

  • Foster KD, Bronlund JE, Paterson AHJ (2005) The prediction of moisture sorption isotherms for dairy powders. Int Dairy J 15:411–418

    Article  CAS  Google Scholar 

  • Gao W, Engell S (2004) Neural network-based identification of nonlinear adsorption isotherms. In: Proc 7th Int Symp Dyn Control Process Syst, July 5-7, Cambridge, MA

  • Gao W, Engell S (2005) Estimation of general nonlinear adsorption isotherms from chromatograms. Comput Chem Eng 29:2242–2255

    Article  CAS  Google Scholar 

  • Gazor HR, Eyvani A (2011) Adsorption isotherms for red onion slices using empirical and neural network models. Int J Food Eng. doi:10.2202/1556-3758.2592

    Google Scholar 

  • Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res NBS A Phys Ch 81:89–96

    Article  Google Scholar 

  • Gupta S (2007) Dairy India, 6th edn. Dairy India Yearbook Publishers, New Delhi

    Google Scholar 

  • Gupta VK (1989) Technology of edible caseins. Indian Dairyman 41:89–96

    Google Scholar 

  • Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931–937

    Article  CAS  Google Scholar 

  • Hagan MT, Demuth HB, Beale M (2004) Neural network design. PWS Publishing Company, Boston

    Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training feed-forward networks with the Marquardt algorithm. IEEE T Neural Networ 5:989–993

    Article  CAS  Google Scholar 

  • IDF (2004a) Casein and caseinates - Determination of fat content. International Dairy Federation, Standard 127 Brussels, Belgium.

  • IDF (2004b) Casein and caseinates - Determination of lactose content. International Dairy Federation, Standard 106, Brussels, Belgium.

  • IDF (2006) Casein and caseinates - Determination of moisture. International Dairy Fedration, Standard 078 Brussels, Belgium.

  • Janjai S, Intawee P, Tohsing K, Mahayothee B, Bala BK, Ashraf MA, Müller J (2009) Neural network modeling of sorption characteristics of longan (Dimocarpus longan Lour.). Comput Electron Agr 66:209–214

    Article  Google Scholar 

  • Kaminski W, Tomczak E (2004) Description of sorption isotherms as a function of water activity, composition and temperature using MLP. In: Proc 14th Int Dry Symp, Sao Paolo, Brazil, August 22–25, vol A, pp 201–208.

  • Kingsly ARP, Ileleji KE (2009) Modeling moisture sorption isotherms of corn dried distillers grains with solubles (DDGS) using artificial neural network. T ASABE 52:213–222

    Article  CAS  Google Scholar 

  • Lomauro CJ, Bakshi AS, Labuza TP (1985) Evaluation of food moisture sorption isotherm equations. Part I. Fruit, vegetable and meat products. Lebensm Wiss Technol 18:111–117

    Google Scholar 

  • MacKay DJC (1992) Bayesian interpolation. Neural Comput 4:415–447

    Article  Google Scholar 

  • Mizrahi S, Karel M (1977) Moisture transfer in a packaged product in isothermal storage: extrapolating the data to any package-humidity combination and evaluating water sorption isotherms. J Food Process Pres 1:225–234

    Article  CAS  Google Scholar 

  • Morse G, Jones R, Thibault J, Tezel FH (2011) Neural network modelling of adsorption isotherms. Adsorption 17:303–309

    Article  CAS  Google Scholar 

  • Myhara RM, Sablani SS, Al-Alawi SM, Taylor MS (1998) Water sorption isotherms of dates: modeling using GAB equation and artificial neural network approaches. Food Sci Technol-LEB 31:699–706

    Article  CAS  Google Scholar 

  • Myhara RM, Sablani SS (2001) Unification of fruit water sorption isotherms using artificial neural networks. Dry Technol 19:1543–1554

    Article  CAS  Google Scholar 

  • Neal RM (1996) Bayesian learning for neural networks, vol 118. Springer, New York, Lecture notes in statistics

    Google Scholar 

  • Oswin CR (1946) The kinetics of package life. III. The isotherm. J Soc Chem Ind (London) 65:419–423

    Article  CAS  Google Scholar 

  • Palou E, Lopez-Malo A, Argaiz A (1997) Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. J Food Eng 31:85–93

    Article  Google Scholar 

  • Panchariya PC, Popovic D, Sharma AL (2002) Desorption isotherm modelling of black tea using artificial neural networks. Dry Technol 20:351–362

    Article  CAS  Google Scholar 

  • Peng G, Chen X, Wu W, Jiang X (2007) Modeling of water sorption isotherm for corn starch. J Food Eng 80:562–567

    Article  Google Scholar 

  • Ramesh MN (2003) Moisture transfer properties of cooked rice during drying. Lebensm Wiss Technol 36:245–255

    Article  CAS  Google Scholar 

  • Rangel-Marrón M, Welti-Chanes J, Córdova-Quiroz AV, Cerón-Bretón JG, Cerón-Bretón RM, Anguebes-Franseschi F (2011) Estimation of moisture sorption isotherms of mango pulp freeze-dried. Int J Biol Biomed Eng 5:18–23

    Google Scholar 

  • Roman GN, Rotsein E, Urbicain MJ (1979) Kinetics of water vapour desorption in apples. J Food Sci 47:193–197

    Article  Google Scholar 

  • Sawhney IK, Sarkar BC, Patil GR (2011) Moisture sorption characteristics of dried acid casein from buffalo skim milk. Food Sci Technol-LEB 44:502–510

    Article  CAS  Google Scholar 

  • Smith SE (1947) The sorption of water vapour by high polymers. J Am Chem Soc 69:646–651

    Article  CAS  Google Scholar 

  • Van den Berg C, Bruin S (1981) Water activity and its estimation in food systems: theoretical aspects. In: Rockland LB, Stewart GF (eds) Water activity: influence on food quality. Academic, New York, p 26

    Google Scholar 

  • Wolf W, Speiss WEL, Jung G (1985) Standardization of isotherm measurements (COST-PROJECT 90 and BIS). In: Simato D, Multon JL (eds) Properties of water in foods. Martinus Nijhoff Publishers, The Netherlands, pp 661–677

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A.K., Sawhney, I.K. Modelling moisture sorption characteristics in dried acid casein using connectionist paradigm vis-à-vis classical methods. J Food Sci Technol 52, 151–160 (2015). https://doi.org/10.1007/s13197-013-0981-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-013-0981-3

Keywords

Navigation