Skip to main content
Log in

Mathematical modeling of drying of pretreated and untreated pumpkin

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40–80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page, Midilli-Kucuk and Parabolic model and the statistical validity of models tested were determined by non-linear regression analysis. The Parabolic model had the highest R2 and lowest χ2 and RMSE values. This indicates that the Parabolic model is appropriate to describe the dehydration behavior for the pumpkin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a:

Drying constant

b:

Drying constant

c:

Drying constant

DR:

Drying rate (g water/g dry matter*h)

k:

Drying constant, 1/min

Me :

Equilibrium moisture content (kg water/kg dry matter)

Mi :

Initial moisture content (kg water/kg dry matter)

MR :

Dimensionless moisture ratio

MR exp,i :

Experimental dimensionless moisture ratio

MR pre,i :

Predicted dimensionless moisture ratio

Mt :

Moisture content at any time of drying (kg water/kg dry matter)

Mt + dt :

Moisture content at t + dt (kg water/kg dry matter)

N:

Number of observations

n:

Drying constant, positive integer

R2 :

Coefficient of determination

t:

Time (min)

W :

Amount of evaporated water (g)

W0:

Initial weight of sample (g)

W1:

Sample dry matter mass (g)

z:

Number of constants

χ2 :

Reduced chi-square

References

  • Akanbi CT, Adeyemi RS, Ojo A (2006) Drying characteristics and sorption isotherm of tomato slices. J Food Eng 73:141–146

    Article  Google Scholar 

  • Akpinar AK, Bicer Y (2008) Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conver Manag 49:1367–1375

    Article  Google Scholar 

  • Aliba I (2007) Microwave, air and combined microwave–air-drying parameters of pumpkin slices. LWT 40:1445–1451

    Article  Google Scholar 

  • AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • Demir V, Gunhan T, Yagcioglu AK, Degirmencioglu A (2004) Mathematical modeling and the determination of some quality parameters of air-dried bay leaves. Biosys Eng 88(3):325–335

    Article  Google Scholar 

  • Doymaz I (2004a) Drying kinetics of white mulberry. J Food Eng 61(3):341–346

    Article  Google Scholar 

  • Doymaz I (2004b) Pretreatment effect on sun drying of mulberry fruit (Morus alba L.). J Food Eng 65(2):205–209

    Article  Google Scholar 

  • Doymaz I (2004c) Convective air drying characteristics of thin layer carrots. J Food Eng 61(3):359–364

    Article  Google Scholar 

  • Doymaz I (2007a) Air-drying characteristics of tomatoes. J Food Eng 78:1291–1297

    Article  Google Scholar 

  • Doymaz I (2007b) The kinetics of forced convective air-drying of pumpkin slices. J Food Eng 79:243–248

    Article  Google Scholar 

  • Doymaz I (2010) Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food Bioprod Proc 88(2–3):124–132

    Article  CAS  Google Scholar 

  • El-Beltagy A, Gamea GR, Amer Essa AH (2007) Solar drying characteristics of strawberry. J Food Eng 78:456–464

    Article  Google Scholar 

  • Gaston AL, Abalone RM, Giner SA, Bruce DM (2004) Effect of modelling assumptions on the effective water diffusivity in wheat. Biosys Eng 88(2):175–185

    Article  Google Scholar 

  • Goyal RK, Kingsly ARP, Manikantan MR, Ilyas SM (2006) Thin layer drying kinetics of raw mango slices. Biosys Eng 95(1):43–49

    Article  Google Scholar 

  • Goyal RK, Mujjeb O, Bhargava VK (2008) Mathematical modeling of thin layer drying kinetics of apple in tunnel dryer. Int J Food Eng 4(8):Article 8

    Google Scholar 

  • Hii CL, Law CL, Cloke M, Suzannah S (2009) Thin layer drying kinetics of cocoa and dried product quality. Biosys Eng 102:153–161

    Article  Google Scholar 

  • Kingsly RP, Goyal RK, Manikantan MR, Ilyas SM (2007a) Effects of pretreatments and drying air temperature on drying behaviour of peach slice. Int J Food Sci Technol 42:65–69

    Article  CAS  Google Scholar 

  • Kingsly ARP, Singh R, Goyal RK, Singh DB (2007b) Thin-layer drying behaviour of organically produced tomato. Am J Food Technol 2:71–78

    Article  Google Scholar 

  • Kumar R, Jain S, Garg MK (2010) Drying behaviour of rapeseed under thin layer conditions. J Food Sci Technol 47(3):335–338

    Article  Google Scholar 

  • Lee JH, Kim HJ (2009) Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. LWT - Food Sci Technol 42:180–186

    Article  CAS  Google Scholar 

  • Midilli A, Kucuk H (2003) Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conver Manag 44(7):1111–1122

    Article  Google Scholar 

  • Sacilik K (2007) Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J Food Eng 79:23–30

    Article  Google Scholar 

  • Sacilik K, Elicin AK (2006) The thin layer drying characteristics of organic apple slices. J Food Eng 73:281–289

    Article  Google Scholar 

  • Sharma GP, Prasad S (2004) Effective moisture diffusivity of garlic cloves undergoing microwave convective drying. J Food Eng 65(4):609–617

    Article  Google Scholar 

  • Shittu TA, Raji AO (2008) Thin layer drying of African Breadfruit (Treculia africana) seeds: modeling and rehydration capacity. Food Bioprocess Technol: 1–8. doi:10.1007/s11947-008-0161-z

  • Simal S, Femenia A, Garau MC, Rossello C (2005) Use of exponential, page and diffusion models to simulate the drying kinetics of kiwi fruit. J Food Eng 66(3):323–328

    Article  Google Scholar 

  • Singh S, Sharma R, Bawa AS, Saxena DC (2008) Drying and rehydration characteristics of water chestnut (Trapa natans) as a function of drying air temperature. J Food Eng 87:213–221

    Article  Google Scholar 

  • Singh G, Arora S, Kumar S (2010) Effect of mechanical drying air conditions on quality of turmeric powder. J Food Sci Technol 47(3):347–350

    Article  Google Scholar 

  • Sobukola OP, Dairo OU, Odunewu AV (2008) Convective hot air drying of blanched yam slices. Int J Food Sci Technol 43:1233–1238

    Article  CAS  Google Scholar 

  • Sogi DS, Shivhare US, Garg SK, Bawa SA (2003) Water sorption isotherms and drying characteristics of tomato seeds. Biosys Eng 84(3):297–301

    Article  Google Scholar 

  • Tembo L, Chiteka ZA, Kadzere I, Akinnifesi FK, Tagwira F (2008) Blanching and drying period affect moisture loss and vitamin C content in Ziziphus mauritiana (Lamk.). Afric J Biotech 7:3100–3106

    CAS  Google Scholar 

  • Togrul IT, Pehlivan D (2002) Mathematical modeling of solar drying of apricots in thin layers. J Food Eng 55:209–216

    Article  Google Scholar 

  • Togrul IT, Pehlivan D (2004) Modeling of thin layer drying kinetics of some fruits under open air sun drying process. J Food Eng 65(3):413–425

    Article  Google Scholar 

  • Tunde-Akintunde TY, Akintunde BO (1996) Post- harvest losses of food crops: sources and solutions. Proceedings of the Annual Conference of the Nigerian Society of Agricultural Engineers, Ile-Ife, Nigeria from November 19–22, 1996. Vol 18:258–261

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Y. Tunde-Akintunde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunde-Akintunde, T.Y., Ogunlakin, G.O. Mathematical modeling of drying of pretreated and untreated pumpkin. J Food Sci Technol 50, 705–713 (2013). https://doi.org/10.1007/s13197-011-0392-2

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0392-2

Keywords

Navigation