Skip to main content
Log in

Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Mint leaves were dried by three different types of dryers, namely; tray, freeze and distributed (indirect)-type solar dryer. Sorption isotherms of fresh, solar, tray and freeze dried mint were determined at temperatures of 15 °C, 25 °C and 35 °C over a range of relative humidities (10–90%). The effect of drying method on the water sorption isotherms of dried mint samples was evaluated. Experimental data were used to determine the best models for predicting the moisture sorption content of mint. Among nine sorption models tested, Peleg, GAB, Lewicki and modified Mizrahi equations gave the best fit to experimental data. The sorption data were analyzed for determination of monolayer moisture content, density of sorbed water, number of adsorbed monolayers, percent bound water, and surface area of adsorbance. The experimental data were also used to determine some thermodynamic properties of mint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam E, Muhlbauer W, Esper A, Wolf W, Spiess W (2000) Effect of temperature on water sorption equilibrium of onion (Allium cepa L.). Drying Technol 18(9):2117–2129

    Article  CAS  Google Scholar 

  • AOAC (1990) In Official methods of analysis. Association of Official Analytical Chemists 17–18

  • Ayranci E, Dalgic AC (1992) Moisture sorption isotherms of Pistacia terebinthus L. and its protein isolate. Lebensm-Wiss Technol-Food Sci Technol 25:482–483

    CAS  Google Scholar 

  • Ayranci E, Duman O (2005) Moisture sorption isotherms of cowpea (Vigna unguiculata L. Walp) and its protein isolate at 10, 20 and 30 °C. J Food Eng 70:83–91

    Article  Google Scholar 

  • Ayranci E, Ayranci G, Dogantan Z (1990) Moisture sorption isotherms of dried apricot, fig and raisin at 20 °C and 30 °C. J Food Sci 55:1591–1593

    Article  Google Scholar 

  • Basu S, Shivhare US, Mujumdar AS (2006) Models for sorption isotherms for foods: a review. Drying Technol 24:917–930

    Article  Google Scholar 

  • Chirife J, Iglesias HA (1978) Equations for fitting water sorption isotherms of foods. Part I. A review. J Food Technol 13:159–174

    Article  Google Scholar 

  • Ekechukwu OV (1999) Review of solar-energy drying systems I: an overview of drying principles and theory. Energy Convers Manage 40:593–613

    Article  CAS  Google Scholar 

  • Ekechukwu OV, Norton B (1999) Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers Manage 40:615–655

    Article  CAS  Google Scholar 

  • Hossain MD, Bala BK, Hossain MA, Mondol MRA (2001) Sorption isotherms and heat of sorption of pineapple. J Food Eng 48:103–107

    Article  Google Scholar 

  • Iglesias HA, Chirife J, Viollaz P (1976) Thermodynamics of water vapor sorption by sugar beet root. J Food Technol 11:91–101

    Article  CAS  Google Scholar 

  • Karel M (1975) Water activity and food preservation. In: Karel M, Fennema OR, Lund DB (eds) Physical principles of food preservation. Principles of food science, part 2. Marcel Dekker, Inc, New York, pp 237–263

    Google Scholar 

  • Kouhila M, Belghit A, Daguenet M, Boutaleb BC (2001) Experimental determination of the sorption isotherms of mint (Mentha viridis), sage (Salvia officinalis) and verbena (Lippia citriodora). J Food Eng 47:281–287

    Article  Google Scholar 

  • Labuza TP (1984) Moisture sorption: practical aspects of isotherm measurement and use. American Association of Cereal Chemists, St Paul

    Google Scholar 

  • Lee JH, Lee MJ (2008) Effect of drying method on the moisture sorption isotherms for Inonotus obliquus mushroom. Lebensm-Wiss Technol-Food Sci Technol 41:1478–1484

    Google Scholar 

  • Lefler JE (1955) The enthalpy-entropy relationship and its implication for organic chemistry. J Org Chem 20:1202–1230

    Article  Google Scholar 

  • Lomauro CJ, Bakshi AS, Labuza TP (1985a) Evaluation of food moisture sorption equations; part I: fruit, vegetable and meat products. Lebensm-Wiss Technol-Food Sci Technol 18:111–117

    Google Scholar 

  • Lomauro CJ, Bakshi AS, Labuza TP (1985b) Evaluation of food moisture sorption equations; part II: milk, coffee, tea, nuts, oilseeds, spices and starchy foods. Lebensm-Wiss Technol-Food Sci Technol 18:118–124

    Google Scholar 

  • McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60:157–165

    Article  Google Scholar 

  • McMinn WAM, Al-Muhtaseb AH, Magee TRA (2005) Enthalpy–entropy compensation in sorption phenomena of starch materials. Food Res Int 38:505–510

    Article  CAS  Google Scholar 

  • Mohamed LA, Kouhila M, Jamali A, Lahsasni S, Mahrouz M (2005) Moisture sorption isotherms and heat of sorption of bitter orange leaves (Citrus aurantium). J Food Eng 67:491–498

    Article  Google Scholar 

  • Moore WJ (1972) Physical chemistry. Longman, London

    Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58:293–299

    Article  CAS  Google Scholar 

  • Park KJ, Vohnikova Z, Brod FPR (2002) Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). J Food Eng 51:193–199

    Article  Google Scholar 

  • Peleg M (1993) Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J Food Process Eng Conn USA 16(1):21–37

    Article  Google Scholar 

  • Rao KJ, Dhas PHA, Emerald FME, Ghosh BC, Balasubramanyam BV, Kulkarni S (2006) Moisture sorption characteristics of chhana podo at 5 °C and 35 °C. J Food Eng 76:453–459

    Article  Google Scholar 

  • Rizvi SSH, Benado AL (1984) Thermodynamic properties of dehydrated foods. Food Technol :83–92, March

  • Rosa GS, Moraes MA, Pinto LAA (2010) Moisture sorption properties of chitosan LWT. Food Sci Technol 43:415–420

    CAS  Google Scholar 

  • Singh RRB, Rao KH, Anjaneyulu ASR, Patil GR (2006) Water desorption characteristics of raw goat meat: effect of temperature. J Food Eng 75:228–236

    Article  Google Scholar 

  • Sinija VR, Mishra HN (2008) Moisture sorption isotherms and heat of sorption of instant (soluble) green tea powder and green tea granules. J Food Eng 86:494–500

    Article  Google Scholar 

  • Soysal Y, Öztekin S (2001) Sorption isosteric heat for some medicinal and aromatic plants. J Agric Eng Res 78(2):159–166

    Article  Google Scholar 

  • Telis VRN, Gabas AL, Menegalli FC, Telis-Romero J (2000) Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochim Acta 343:49–56

    Article  CAS  Google Scholar 

  • Timoumi S, Zagrouba F (2005) Water sorption and dehydration kinetics of Tunisian rosemary leaves. Desalination 185:517–521

    Article  CAS  Google Scholar 

  • Tsami E, Krokida MK, Drouzas AE (1998) Effect of drying method on the sorption characteristics model fruit powders. J Food Eng 38:381–392

    Article  Google Scholar 

  • Tsimidou M, Biliaderis CG (1997) Kinetic studies of saffron (Crocus sativus L) quality deterioration. J Agric Food Chem 45(8):2890–2898

    Article  CAS  Google Scholar 

  • Whfoods (2006) The world’s healthiest foods. Peppermint, fresh; In depth nutrient analysis. http://www.whfoods.com/genpage.php?tname=nutrientprofile&dbid=115, June

Download references

Acknowledgements

This work was supported by The Research Fund of Gaziantep University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Coşkun Dalgıç.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalgıç, A.C., Pekmez, H. & Belibağlı, K.B. Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves. J Food Sci Technol 49, 439–449 (2012). https://doi.org/10.1007/s13197-011-0302-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0302-7

Keywords

Navigation