Skip to main content

Advertisement

Log in

Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods—a review

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Non-destructive systems are recent trends for quality evaluation of fruits and vegetables. Information on post-harvest variations in electrical properties is needed to develop new instruments for this purpose. Electrical properties are finding increasing application in agriculture and food processing industries. Knowledge of dielectric properties of foods as a function of moisture content and temperature is essential in the design and control of drying systems. As simple, rapid and non-destructive measuring techniques, dielectric spectroscopy provides information about the dielectric response of materials to electromagnetic field. Electrical properties of agricultural materials have been of interest for many years. The interest in dielectric properties of materials has historically been associated with the design of electrical equipment. This review paper covers theoretical aspects of different electrical properties, their measurement techniques, applications of dielectric properties in agriculture/food processing sector and potential applications of thermal imaging (TI) for quality and safety assessment in food processing. The values of dielectric properties of a number of products including food grains, fruits and vegetables, and meat and meat products are presented in table form. This comprehensive coverage will be useful for academic, scientific and industrial community in treating and applying the facts in developing/testing new processes and products based on electromagnetic energy application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afsar MN, Birch JR, Clarke RN, Chantry GW (1986) Measurement of dielectric properties of materials. IEEE Trans Instrum Meas 74(1):183–199

    CAS  Google Scholar 

  • Agilent Technologies (2005) Agilent 16452A liquid test fixture operation and service manual, pp. 3–15

  • Ahmed J, Ramaswamy HS, Raghavan VGS (2007) Dielectric properties of Indian Basmati rice flour slurry. J Food Eng 80:1125–1133

    Google Scholar 

  • Ahmed J, Ramaswamy HS, Raghavan VGS (2008) Dielectric properties of soybean protein isolate dispersions as a function of concentration, temperature and pH. J Food Sci 41(1):71–81

    CAS  Google Scholar 

  • Ahmed J, Seyhun N, Ramaswamy HS, Giorgio L (2009) Dielectric properties of potato puree in microwave frequency range as influenced by concentration and temperature. Int J Food Prop 12(4):896–909

    CAS  Google Scholar 

  • Alchanatis V, Cohen Y, Cohen S, Moller M, Meron M, Tsipris J (2006) Fusion of IR and multispectral images in the visible range for empirical and model based mapping of crop water status. American Society of Agricultural and Biological Engineers Paper no. 061171

  • Amon F, Hamins A, Bryner N, Rowe J (2008) Meaningful performance evaluation conditions for fire service thermal imaging cameras. Fire Saf J 43:541–550

    Google Scholar 

  • Arora N, Martins D, Ruggerio D, Tousimis E, Swistel AJ, Osborne MP (2008) Effectiveness of a non-invasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg 196:523–526

    Google Scholar 

  • ASAE (2000) Dielectric properties of grain and seed. In: ASAE Standards 2000. ASAE, St. Joseph 549–558

  • Baranowski P, Lipecki J, Mazurek W, Walczak RT (2008) Detection of water core in ‘Gloster’ apples using thermography. Postharvest Biol Technol 47(3):358–366

    Google Scholar 

  • Barbosa-Canovas GV, Juliano P, Peleg M (2006) Engineering properties of foods, in food engineering. In Encyclopaedia of Life Support Systems (EOLSS). Developed under Auspices of the UNESCO, EOLSS Publishers. Oxford. UK, (http://www.eolss.net)

  • Basaran P, Basaran-Akgul N, Rasco BA (2010) Dielectric properties of chicken and fish muscle treated with microbial transglutaminase. Food Chem 120(2):361–370

    CAS  Google Scholar 

  • Bengtsson NE, Risman PO (1971) Dielectric properties of food at 3 GHz as determined by a cavity perturbation technique. II. Measurements on food materials. J Microw Power 6(2):107–123

    Google Scholar 

  • Berbert PA, Queriroz DM, Melo EC (2002) Dielectric properties of common bean. Biosystems Eng 83(4):449–462

    Google Scholar 

  • Berry BW (2000) Use of infrared thermography to assess temperature variability in beef patties cooked from the frozen and thawed states. Foodserv Res Int 12(4):255–262

    Google Scholar 

  • Blackham DV, Pollard RD (1997) An improved technique for permittivity measurements using a coaxial probe. IEEE Trans Instrum 46(5):1093–1099

    Google Scholar 

  • Buffler CR (1993) Viscosity and dielectric property measurements. J Food Sci 63:983–986

    Google Scholar 

  • Buffler CR, Stanford MA (1991) Effects of dielectric and thermal properties on the microwave heating of foods. Microw World 12(4):15–23

    Google Scholar 

  • Burfoot D, Brown K, Xu Y, Reavell SV, Hall K (2000) Localised air delivery systems in the food industry. Trends Food Sci Technol 11:410–418

    CAS  Google Scholar 

  • Calay RK, Newborough M, Probert D, Calay PS (1995) Predictive equations for the dielectric properties of foods. Int J Food Sci Technol 29:699–713

    Google Scholar 

  • Carey AA, Hayzen AJ (2008) The Dielectric Constant and Oil Analysis.Available from: http://www.noria.com/learning_center/category_article.asp?articleid=226&relatedbookgroup=OilAnalysis

  • Castro-Giráldez M, Fito PJ, Fito P (2010) Application of microwaves dielectric spectroscopy for controlling pork meat (Longissimus dorsi) salting process. J Food Eng 97(4):484–490

    Google Scholar 

  • Cataldo A, Piuzzi E, Cannazza G, De Benedetto E, Tarricone L (2010) Quality and anti-adulteration control of vegetable oils through microwave dielectric spectroscopy. Measurement. doi:10.1016/j.measurement.2010.02.008, Accepted

    Google Scholar 

  • Chaerle L, Van der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5(11):495–501

    CAS  Google Scholar 

  • Chen JY, Iyo C, Kawano S (1999) Development of calibration with sample cell compensation for determining the fat content of unhomogenized raw milk by a simple near infrared transmittance method. J Near Infrared Spectrosc 7:265–273

    CAS  Google Scholar 

  • Chugh RK, Stuchly SS, Rzepecka MA (1973) Dielectric properties of wheat at microwave frequencies. Trans ASAE 16(906–9):913

    Google Scholar 

  • Danno A, Miyazato M, Ishiguro E (1977) Quality evaluation of agricultural products by infrared imaging method: Grading of fruits for bruise and other surface defects. Mem Fac Agric, Kagoshima Univ 14:123–138

    Google Scholar 

  • Danno A, Miyazato M, Ishiguro E (1980) Quality evaluation of agricultural products by infrared imaging method. III. Maturity evaluation of fruits and vegetables. Mem Fac Agric, Kagoshima Univ 16:157–164

    Google Scholar 

  • Datta AK, Nelson SO (2000) Fundamental physical aspects of microwave absorption and heating in handbook of microwave technology for food applications. CHIPS Publications, USA

    Google Scholar 

  • de Loor GP, Meijboom FW (1966) The dielectric constant of foods and other materials with high water contents at microwave frequencies. J Food Technol 1:313–322

    Google Scholar 

  • Dejmek P, Miywaki O (2002) Relationship between the rheological properties of potato tuber tissue after various forms of processing. Biosci Biotechnol Biochem 66:1218–1223

    CAS  Google Scholar 

  • Dev SRS, Raghavan GSV, Gariepy Y (2008) Dielectric properties of egg components and microwave heating for in-shell pasteurization of eggs. J Food Eng 86(2):207–214

    Google Scholar 

  • Du C, Sun DW (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15:230–249

    Google Scholar 

  • EI-Shaml SM, Selim IZ, EI-Anwar IM, EI-Mallah MH (1992) Dielectric properties for monitoring the quality of heated oils. J Am Oil Chem Soc 69(9):872–875

    Google Scholar 

  • Emekci M, Navarro S, Donahaye E, Rindner M, Azrieli A (2002) Azrieli, respiration of Tribolium castaneum (Herbst) at reduced oxygen concentrations. J Stored Prod Res 38:413–425

    Google Scholar 

  • Emekci M, Navarro S, Donahaye E, Rindner M, Azrieli A (2004) Respiration of Rhyzopertha dominica (F.) at reduced oxygen concentrations. J Stored Prod Res 40:27–38

    Google Scholar 

  • Engelder DS, Buffler CR (1991) Measuring dielectric properties of food products at microwave frequencies. Microw World 12(2):6–15

    Google Scholar 

  • Everard CD, Fagan CC, O’Donnell CP, O’Callaghan DJ, Lyng JG (2006) Dielectric properties of process cheese from 0.3 to 3 GHz. J Food Eng 75(3):415–425

    Google Scholar 

  • Feng H, Tang J, Cavalieri RP (2002) Dielectric properties of dehydrated apples as affected by moisture and temperature. Trans ASAE 45:129–135

    Google Scholar 

  • Fito PJ, Ortolá MD, De los Reyes R, Fito P, De los Reyes E (2004) Control of citrus surface drying by image analysis of infrared thermography. J Food Eng 61(3):287–290

    Google Scholar 

  • Foster AM, Ketteringham LP, Swain MJ, Kondjoyan A, Havet M, Rouaud O (2006) Design and development of apparatus to provide repeatable surface temperature–time treatments on inoculated food samples. J Food Eng 76:7–18

    Google Scholar 

  • Fritsch CW, Egberg DC, Magnuson JS (1979) Changes in dielectric constant as a measure of frying oil deterioration. J Am Oil Chem Soc 56(8):746–750

    CAS  Google Scholar 

  • Fuller MP, Wisniewski M (1998) The use of infrared thermal imaging in the study of ice nucleation and freezing of plants. J Therm Biol 23:81–89

    Google Scholar 

  • Garcia A, Torres JL, De Blas M (2001) Dielectric properties of fruits. J Food Eng 48:203–211

    Google Scholar 

  • Garcia A, Torres JL, De Blas M, De Francisco A, Illanes R (2004) Dielectric characteristics of grape juice and wine. Biosystems Eng 88(3):343–349

    Google Scholar 

  • Gariepy C, Amiot J, Nadai S (1989) Ante-mortem detection of PSE and DFD by infrared thermography of pigs before stunning. Meat Sci 25:37–41

    Google Scholar 

  • Geyer S, Gottschalk K, Hellebrand HJ, Schlauderer R (2004) Application of a thermal imaging measuring system to optimize the climate control of potato stores. In Ag Eng Conference, 12–16 September 2004, pp.1066–1067, Leuven, Belgium

  • Ghannouchi FM, Bosisio RG (1989) Measurement of microwave permittivity using a six-port reflectometer with an open-ended coaxial line. IEEE Trans Instrum Meas 38(2):505–508

    Google Scholar 

  • Ghatass ZF, Soliman MM, Mohamed MM (2008) Dielectric technique for quality control of beef meat in the range 10 kHz–1 MHz. Am-Euras J Sci Res 3(1):62–69

    Google Scholar 

  • Ginesu G, Giusto D, Märgner V, Meinlschmidt P (2004) Detection of foreign bodies in food by thermal image processing. IEEE Trans Ind Electron 51:480–490

    Google Scholar 

  • Giorleo G, Meola C (2002) Comparison between pulsed and modulated thermography in glass–epoxy laminates. NDT and E Int 35(5):287–292

    CAS  Google Scholar 

  • Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol 18(12):590–598

    CAS  Google Scholar 

  • Gowen AA, Tiwari BK, Cullen PJ, McDonnell K, O’Donnell CP (2010) Applications of thermal imaging in food quality and safety assessment—review. Trends Food Sci Technol 21(4):190–200

    CAS  Google Scholar 

  • Grant JP, Clarke RN, Symm GT, Spyrou NM (1989) A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements. J Physics E: Sci Instrum 22:757–770

    CAS  Google Scholar 

  • Green AD (1997) Measurements of the dielectric properties of cheddar cheese. J Microw Power Electromagn Energy 32(1):16–27

    Google Scholar 

  • Guan D, Cheng M, Wang Y, Tang J (2004) Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. J Food Sci 69(1):30–37

    Google Scholar 

  • Guo W, Nelson SO, Trabelsi S, Kays SJ (2007a) 10–1800-MHz dielectric properties of fresh apples during storage. J Food Eng 83:562–569

    CAS  Google Scholar 

  • Guo W, Trabelsi S, Nelson SO, Jones DR (2007b) Storage effects on dielectric properties of eggs from 10 to 1,800 MHz. J Food Sci 72:E335–E340

    CAS  Google Scholar 

  • Guo W, Tiwari G, Tang J, Wang S (2008) Frequency, moisture and temperature-dependent dielectric properties of chickpea flour. Biosystems Eng 101:217–224

    Google Scholar 

  • Guo W, Wang S, Tiwari G, Johnson JA, Tang J (2010a) Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating. Food Sci Technol 43:193–201

    CAS  Google Scholar 

  • Guo W, Zhu X, Yi L, Zhuang H (2010b) Sugar and water contents of honey with dielectric property sensing. J Food Eng 97(2):275–281

    CAS  Google Scholar 

  • Hasted JB (1973) Aqueous dielectrics. Chapman and Hall, London

    Google Scholar 

  • Hasted JB, Ritson DM, Colic CH (1948) Dielectric properties of aqueous ionic solutions. Part 1 and 2 J Chem Phys 16(1):1–21

    CAS  Google Scholar 

  • Hein M, Henning H, Isengard HD (1998) Determination of total polar with new methods for the quality survey of frying oils and fats. J Chem Phys 47:447–454

    CAS  Google Scholar 

  • Hellebrand HJ, Linke M, Beuche H, Herold B, Geyer M (2000) Horticultural products evaluated by thermography. In Ag Eng 2000, 2–7 July 2000, Paper No. 00-PH-003, University of Warwick, UK

  • Herve AG, Tang J, Luedecke L, Feng H (1998) Dielectric properties of cottage cheese and surface treatment using microwaves. J Food Eng 37(4):389–410

    Google Scholar 

  • Hewlett-Packard (1992) Basics of measuring the dielectric properties of materials. Application Note 1217–122l

  • Hlavacova Z (2003) Low frequency electric properties utilization in agriculture and food treatment. Res Agric Eng 49(4):125–136

    Google Scholar 

  • Ibarra JG, Tao Y, Xin H (2000) Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat. Opt Eng 39(11):3032–3038

    Google Scholar 

  • Icier F, Baysal T (2004a) Dielectric properties of food materials-2: measurement techniques. Crit Rev Food Sci Nutr 44:473–478

    CAS  Google Scholar 

  • Icier F, Baysal T (2004b) Dielectrical properties of food materials-1: factors affecting and industrial uses. Crit Rev Food Sci Nutr 44:465–471

    CAS  Google Scholar 

  • Ikediala JN, Tang J, Drake SR, Neven LG (2000) Dielectric properties of apple cultivars and codling moth larvae. Trans ASAE 43(5):1175–1184

    Google Scholar 

  • Ikediala JN, Tang J, Drake SR, Neven LG (2001) Dielectric properties of apple cultivars and codling moth larvae. Trans ASAE 1175–1184

  • Inoue C, Hagura Y, Ishikawa M, Suzuki K (2002) The dielectric property of soybean oil in deep fat frying and the effect of frequency. J Food Sci 67:1126–1129

    CAS  Google Scholar 

  • Jha SN, Matsuoka T, Kawano S (2001) A simple NIR instruments for liquid type samples. In: Proceedings of the Annual Meeting of the Japanese Society of Agricultural Structures, Paper No. c-20:146–147

  • Jha SN, Matsuoka T, Kawano S (2004) Changes in electrical resistance of eggplant with gloss, weight and storage period. Biosystems Eng 87(1):119–123

    Google Scholar 

  • Kato K (1997) Electrical density sorting and estimation of soluble solids content of watermelon. J Agric Eng Res 67(2):161–170

    Google Scholar 

  • Kawano S (1998) New application of non-destructive methods for quality evaluation of fruits and vegetables in Japan. J Jpn Soc Hortic Sci 67(6):1176–1179

    Google Scholar 

  • Keam RB, Holmes WS (1995) Uncertainty analysis of measurement of complex permittivity using micro strip transmission line. In Proceedings SBMO/IEEE MTT-S

  • Kent M (1970) Complex permittivity of white fish meal in the microwave region as a function of temperature and moisture content. J Phys, D Appl Phys 3:1275–1283

    Google Scholar 

  • Kent M (1972) Microwave dielectric properties of fishmeal. J Microwave Power 7(2):109–116

    Google Scholar 

  • Kent M (1977) Complex permittivity of fishmeal: a general discussion of temperature, density and moisture dependence. J Microwave Power 12(4):341–345

    Google Scholar 

  • Kent M (1987) Electrical and dielectric properties of food materials. A Bibliography and Tabulated Data. A COST 90bis production. Science and Technology Publishers, Hornchurch

  • Kent M, Kress-Rogers E (1986) Microwave moisture and density measurements in particulate solids. Trans Inst Meas Control 8(3):167–168

    Google Scholar 

  • Kent M, Kress-Rogers E (1987) The COST 90bis collaborative work on the dielectric properties of foods. In Physical Properties of Foods. 2. COST 90bis Final Seminar Proceedings, eds

  • Kim YR, Morgan MT, Okos MR, Stroshine RL (1998) Measurement and prediction of dielectric properties of biscuit dough at 27 MHz. J Microw Power Electromagn Energy 33(3):184–194

    Google Scholar 

  • Kim KB, Lee SS, Noh MS (2003) On-line measurement of grain moisture content using RF impedance. Trans ASAE 46(3):861–867

    Google Scholar 

  • Kraszewski A (1980) Microwave aquametry. J Microw Power 15:209–220

    Google Scholar 

  • Kraszewski A (1996) Microwave aquametry—electromagnetic interaction with water containing materials. Piscataway, NJ: IEEE Press. Volume 47 2005 Canadian Biosystems Eng 7.29

  • Kraszewski AW, Nelson SO (1989) Composite model of the complex permittivity of cereal grain. J Agric Eng Res 43:211–219

    Google Scholar 

  • Kudra T, Raghavan SV, Akyel C, Bossisio R, van de Voort FR (1992) Electromagnetic properties of milk and its constituents at 2.45 MHz. J Microwave Power Institute 27(4):199–204

    Google Scholar 

  • Lamprecht I, Schmolz E, Blanco L, Romero CM (2002) Flower ovens: thermal investigations on heat producing plants. Thermochim Acta 391(1–2):107–118

    CAS  Google Scholar 

  • Lawrence KC, Nelson SO, Kraszewski AW (1992) Temperature dependence of the dielectric properties of pecan. Trans ASAE 35(1):251–255

    Google Scholar 

  • Lawrence KC, Nelson SO, Bartley PG Jr (1998) Coaxial dielectric sensor for cereal grains. Institute of electrical and electronics engineers. IEEE IMTC Proceedings 1:541–546

    Google Scholar 

  • Li A, Barringer SA (1997) The effect of salt on the dielectric properties of ham at sterilization temperatures. IFT Annual Meeting Book of Abstracts 55(5):155

    Google Scholar 

  • Liao X, Raghavan GSV, Meda V, Yaylayan VA (2001) Dielectric properties of supersaturated a- D-glucose aqueous solutions at 2,450 MHz. J Microw Power Electromagn Energy 36(3):131–138

    CAS  Google Scholar 

  • Liu Y, Dias R (2002) Evaluation of package defects by thermal imaging. In Proceedings from the 28th International Symposium for Testing and Failure analysis, 3–7 November 2002, Phoenix, Arizona

  • Liu C, Sakai N (1999) Dielectric properties of tuna at 2,450 and 915 MHz as a function of temperature. J Jpn Soc Food Sci Technol 20:42–45

    Google Scholar 

  • Lizhi Hu, Toyoda K, Ihara I (2008) Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. J Food Eng 88:151–158

    Google Scholar 

  • Lizhi Hu, Toyoda K, Ihara I (2010) Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. J Food Eng 96(2):167–171

    Google Scholar 

  • Lu Y, Fujii M, Kanai H (1998) Dielectric analysis of hen egg white with denaturation and in cool storage. Int J Food Sci Technol 33:393–399

    CAS  Google Scholar 

  • Lyng JG, Scully M, McKenna BM (2002) The influence of compositional changes in beef burgers on their temperatures during microwave heating and their thermal and dielectric properties. J Muscle Food 13:123–142

    Google Scholar 

  • Lyng JG, Zhang L, Brunton NP (2005) A survey of the dielectric properties of meats and ingredients used in meat product manufacture. Meat Sci 69:589–602

    Google Scholar 

  • Maezawa S, Akimoto K (1996) Characteristics of electrical conductivity of low-temperature sensitive vegetables. Res Bull Fac Agr Gifu Univ, Japan 61:81–86

    Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG, Paliwal J (2005) Thermal imaging of a stored grain silo to detect a hot spot. The Canadian Society for engineering in agricultural biological systems. Paper No. 05-002

  • Manickavasagan A, Jayas DS, White NDG, Jian F (2006) Thermal imaging of a stored grain silo to detect a hot spot. Appl Eng Agric 22(6):891–897

    Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG, Paliwal J (2008a) Wheat class identification using thermal imaging. Food Bioprocess Technol. doi:10.1007/s11947-008-0110-x, Accepted

    Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG, Paliwal J (2008b) Wheat class identification using thermal imaging: a potential innovative technique. Trans ASABE 51(2):649–651

    Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG (2008c) Thermal imaging to detect infestation by Cryptolestes ferrugineus inside wheat kernels. J Stored Prod Res 44(2):186–192

    Google Scholar 

  • Markx GH, Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme and Microbial Technol 25:161–171

    CAS  Google Scholar 

  • Mashimo S, Kuwabara S, Yagihara S, Higasi K (1987) Dielectric relaxation structure of bound water in biological materials. J Phys Chem 91(25):6337–6338

    CAS  Google Scholar 

  • McCullagh JJP, Setchell DJ, Gulabivala K, Hussey D, Biagioni P (2000) A comparison of thermocouple and infrared thermographic analysis of temperature rise on the root surface during the continuous wave of condensation technique. Int Endod J 33:326–332

    CAS  Google Scholar 

  • Meinlschmidt P, Maergner V (2003) Thermographic techniques and adapted algorithms for automatic detection of foreign bodies in food. Conference Thermosense XXV, Orlando, Florida, USA, 168–176

  • Mellgren E, Ohlsson T, Risman PO, Skjoldebrand C, Wass B (1988) Dielectric properties of wheat bread dough. In Cereal Science and Technology in Sweden, Proceedings from an International Symposium, June 13–16, 1988, ed. N-G. Asp. Ystad, Sweden, pp. 322–324

  • Meyer W, Schilz W (1980) A microwave method for density independent determination of the moisture content of solids. J Phys, D Appl Phys 13:1823–1836

    CAS  Google Scholar 

  • Miller LA, Gordon J, Davis EA (1991) Dielectric and thermal transition properties of chemically modified starches during heating. Cereal Chem 68(5):441–448

    CAS  Google Scholar 

  • Mudgett RE (1985) Dielectric properties of food. In: Decareau RV (ed) Microwaves in the food processing industry. Academic, Orlando, pp 15–37

    Google Scholar 

  • Mudgett RE (1986) Electrical properties of foods. In: Rao MA, Rizvi SSH (eds) Engineering properties of foods. Marcel Dekker, New York, pp 329–390

    Google Scholar 

  • Neethirajan S, Karunakaran C, Jayas DS, White NDG (2007) Detection techniques for stored-product insects in grain. Food Control 18:157–162

    CAS  Google Scholar 

  • Nelson SO (1965) Dielectric properties of grain and seed in the 1 to 50-MC range. Trans ASAE 8(1):38–43

    Google Scholar 

  • Nelson SO (1973) Electrical properties of agricultural products—a critical review. Trans ASAE 16:384–400

    Google Scholar 

  • Nelson SO (1980) Microwave dielectric properties of fresh fruits and vegetables. Trans ASAE 23:1314–1317

    Google Scholar 

  • Nelson SO (1983) Dielectric properties of some fresh fruits and vegetables at frequencies of 2.45 to 22 GHz. Trans ASAE 26:613–616

    Google Scholar 

  • Nelson SO (1984) Moisture, frequency, and density dependence of the dielectric constant of shelled, yellow-dent field corn. Trans ASAE 30(5):1573–1578, 1585

    Google Scholar 

  • Nelson SO (1987) Models for the dielectric constants of cereal grains and soybeans. J Microw Power Electromagn Energy 22:35–39

    Google Scholar 

  • Nelson SO (1991) Dielectric properties of agricultural products measurements and applications. IEEE Trans Electr Insul 26(5):845–869

    CAS  Google Scholar 

  • Nelson SO (1992) Microwave dielectric properties of fresh onions. Trans ASAE 35:963–966

    Google Scholar 

  • Nelson SO (1996) Review and assessment of radio-frequency and microwave energy for stored grain insect control. Trans ASAE 39(4):1475–1484

    Google Scholar 

  • Nelson SO (1999) Dielectric properties measurement techniques and applications. Trans ASAE 42(2):523–529

    Google Scholar 

  • Nelson SO (2003) Frequency- and temperature-dependent permittivities of fresh fruits and vegetables from 0.0l to 1.8 GHz. Trans ASAE 46:567–574

    Google Scholar 

  • Nelson SO (2005) Dielectric spectroscopy in agriculture. J Non-Cryst Solids 351:2940–2944

    CAS  Google Scholar 

  • Nelson SO (2006) Agricultural applications of dielectric measurements. IEEE Trans Dielectr Electr Insul 13:688–702

    Google Scholar 

  • Nelson SO (2008) Dielectric properties of agricultural products and some applications. Res Agric Eng 54(2):104–112

    Google Scholar 

  • Nelson SO, Bartley PG (2000) Measuring frequency and temperature dependent dielectric properties of food materials. Trans ASAE 43(6):1733–1736

    Google Scholar 

  • Nelson SO, Bartley PG Jr (2002) Frequency and temperature dependence of the dielectric properties of food materials. Trans ASAE 45:1223–1227

    Google Scholar 

  • Nelson SO, Payne JA (1982) RF dielectric heating for pecan weevil control. Trans ASAE 25(2):456–458, 464

    Google Scholar 

  • Nelson SO, Whitney WK (1960) Radio-frequency electric fields for stored-grain insect control. Trans ASAE 3:133–137

    Google Scholar 

  • Nelson SO, You TS (1989) Microwave dielectric properties of corn and wheat kernels and soybeans. Trans ASAE 32(1):242–249

    Google Scholar 

  • Nelson SO, Soderholm LH, Yung FD (1953) Determining the dielectric properties of grain. J Agric Eng 34:608–610

    Google Scholar 

  • Nelson SO, Stetson LE, Schlaphoff CW (1974) A general computer program for precise calculation of dielectric properties from short-circuited wave-guide measurements. IEEE Trans Instrum Meas 23(4):455–460

    Google Scholar 

  • Nelson SO, Forbus WR Jr, Lawrence KC (1994) Permittivities of fresh fruits and vegetables at 0.2 to 20 GHz. J Microw Power Electromagn Energy 29:81–93

    CAS  Google Scholar 

  • Nelson SO, Forbus WR Jr, Lawrence KC (1995) Assessment of microwave permittivity for sensing peach maturity. Trans ASAE 38:579–585

    Google Scholar 

  • Nelson SO, Trabelsi S, Kays SJ (2006) Dielectric spectroscopy of honeydew melons from 10 MHz to 1.8 GHz for quality sensing. Trans ASABE 49:1977–1981

    Google Scholar 

  • Nelson SO, Guo W, Trabelsi S, Kays SJ (2007) Dielectric spectroscopy of watermelons for quality sensing. Meas Sci Technol 18:1887–1892

    CAS  Google Scholar 

  • Nott KP, Hall LD (1999) Advances in temperature validation of foods. Trends Food Sci Technol 10:366–374

    CAS  Google Scholar 

  • Nunes AC, Bohigas X, Tejada J (2006) Dielectric study of milk for frequencies between 1 and 20 GHz. J Food Eng 76:250–255

    Google Scholar 

  • Nyfors E, Vainikainen P (1989) Industrial microwave sensors, Chapter 2. Artech House, Norwood

    Google Scholar 

  • O’Connor JF, Synnot EC (1982) Seasonal variation in dielectric properties of butter at 15 MHz and 4 °C. J Food Sci Technol 6:49–59

    Google Scholar 

  • Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57(9):2121–2132

    CAS  Google Scholar 

  • Offermann S, Bicanic D, Krapez JC, Balageas D, Gerkema E, Chirtoc M (1998) Infrared transient thermography for noncontact, non-destructive inspection of whole and dissected apples and of cherry tomatoes at different maturity stages. Instrum Sci Technolog 26(2&3):145–155

    Google Scholar 

  • Ohlsson T (1989) Dielectric properties and microwave processing. In food properties and computer-aided engineering of food processing systems, eds RP

  • Ohlsson T, Bengtsson NE (1975) Dielectric food data for microwave sterilization processing. J Microw Power 10:93–108

    CAS  Google Scholar 

  • Ohlsson T, Bengtsson NE, Risman PO (1974a) The frequency and temperature dependence of dielectric food data as determined by a cavity perturbation technique. J Microw Power 9:129–145

    Google Scholar 

  • Ohlsson T, Henriques M, Bengtsson N (1974b) Dielectric properties of model meat emulsions at 900 and 2,800 MHz in relation to their composition. J Food Sci 39:1153–1156

    Google Scholar 

  • Pace W, Westphal WB, Goldblith SA (1968) Dielectric properties of commercial cooking oils. J Food Sci 33:30–36

    CAS  Google Scholar 

  • Paul S, Mittal GS (1996) Dynamics of fat/oil degradation during frying based on physical properties. J Food Process Eng 19:201–221

    Google Scholar 

  • Piyasena P, Dussault C (1999) Evaluation of a 1.5 kW radio frequency heater for its potential use in a high temperature short time (HTST) process. In CIFST Annual Conference. Kelowna, BC, June

  • Prakash S, Armstrong JG (1970) Measurement of the dielectric constant of butter. Dairy Ind 35(10):688–689

    Google Scholar 

  • Puranik S, Kumbhakarne AK, Mehrotra S (1991) Dielectric properties of honey-water mixture between 10 MHz and 10 GHz using time domain technique. J Microw Power Electromagn Energy 24(4):196–201

    Google Scholar 

  • Ragni L, Al-Shami A, Mikhaylenko G, Tang J (2007) Dielectric characterization of hen eggs during storage. J Food Eng 82:450–459

    Google Scholar 

  • Rajendran S (1999) Detection of insect infestation in stored food commodities. J Food Sci Technol 36(4):283–300

    Google Scholar 

  • Raveendranath U, Mathew KT (1995) Microwave technique for water pollution study. J MW Power EM Energy 30(3):188–194

    Google Scholar 

  • Risman PO (1991) Terminology and notation of microwave power and electromagnetic energy. Microw Power Electromagn Energy 26:243–250

    Google Scholar 

  • Risman PO, Bengtsson NE (1971) Dielectric properties of food at 3 GHz as determined by a cavity perturbation technique. J Microw Power 6:101–106

    Google Scholar 

  • Roberts S, von Hipple A (1946) A new method for measuring dielectric constant and loss in the range of centimetres waves. J Applied physics 17:610–616

    CAS  Google Scholar 

  • Roebuck BD, Goldblith SA, Westphal WB (1972) Dielectric properties of carbohydrate–water mixtures at microwave frequencies. J Food Sci 37:199–204

    CAS  Google Scholar 

  • Rudan-Tasic D, Klofutar C (1999) Characteristics of vegetable oils of some Slovene manufactures. Acta Chim Slov 46(4):511–521

    CAS  Google Scholar 

  • Ryynanen S (1995) The electromagnetic properties of food materials: a review of the basic principles. J Food Eng 26:409–429

    Google Scholar 

  • Rzepecka MA, Pereira M (1974) Permittivity of some dairy products at 2,450 MHz. J Microwave Power 9(4):277–288

    Google Scholar 

  • Sacilik K, Tarimci C, Colak A (2006) Dielectric properties of flaxseeds as affected by moisture content and bulk density in the radio frequency range. Biosystems Eng 93(2):153–160

    Google Scholar 

  • Sacilik K, Tarimci C, Colak A (2007) Moisture content and bulk density dependence of dielectric properties of safflower seed in the radio frequency range. J Food Eng 78(4):1111–1116

    Google Scholar 

  • Sharma GP, Prasad S (2002) Dielectric properties of garlic (Allium Sativum L.) at 2,450 MHz as function of temperature and moisture content. J Food Eng 52(4):343–348

    Google Scholar 

  • Shaw TM, Galvin JA (1949) High frequency heating characteristics of vegetable tissues determining from electrical conductivity measurements. In Proceedings Institution of Radio Engineering, Institute of Radio Engineering and Electronics Publication 37:83–86. Chaberska, Prague: IREE

  • Sheen NI, Woodhead IM (1999) An open-ended coaxial probe for broad-band permittivity measurement of agricultural products. J Agric Eng Res 74:193–202

    Google Scholar 

  • Shiinoki Y, Motouri Y, Ito K (1998) On-line monitoring of moisture and salt contents by the microwave transmission method in a continuous salted butter-making process. J Food Eng 38:153–167

    Google Scholar 

  • Sipahioglu O, Barringer SA, Bircan C (2003) The dielectric properties of meats as a function of temperature and composition. J Microw Power Electromagn Energy 38(3):161–169

    CAS  Google Scholar 

  • Sosa-Moralesa ME, Tiwari G, Wang S, Tang J, Garcia HS, Lopez-Malo A (2009) Dielectric heating as a potential post-harvest treatment of disinfesting mangoes, Part I: relation between dielectric properties and ripening. Biosystems Eng 103:297–303

    Google Scholar 

  • Stajnko D, Lakota M, Hocevar M (2004) Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Comput Electron Agric 42(1):31–42

    Google Scholar 

  • Stier RF (2004) Tests to monitor quality of deep-frying fats and oils. Eur J Lipid Sci Technol 106:766–771

    CAS  Google Scholar 

  • Stuchly MA, Stuchly SS (1980) Dielectric properties of biological substances—tabulated. J Microw Power 15:19–25

    Google Scholar 

  • Sugiura R, Noguchi N, Ishii K (2007) Correction of low-altitude thermal images applied to estimating soil water status. Biosystems Eng 96(3):301–313

    Google Scholar 

  • Sun E, Datta A, Lobo S (1995) Composition—based prediction of dielectric properties of foods. J Microw Power Electromagn Energy 30(4):205–212

    CAS  Google Scholar 

  • Thompson DR, Zachariah GL (1971) Dielectric theory and bioelectrical measurements [Part II. Experimental (Apples)]. Trans ASAE 14(2):214–215

    Google Scholar 

  • To EC, Mudgett RE, Wang DIC, Goldblith SA, Decareau RV (1974) Dielectric properties of food materials. J Microw Power 9(4):303–316

    Google Scholar 

  • Toyoda K (2003) The utilization of electric properties. In: Sumio K (ed) The handbook of non-destructive detection, Science Forum, Tokyo, pp. 108–126 (Chapter 8)

  • Trabelsi S, Nelson SO (2003) Free-space measurement of dielectric properties of moist granular materials at microwave frequencies. IMTC-2003- Instrumentation and Measurement Technology Conference, pp. 518–523. Vail, USA, 20–22 May

  • Trabelsi S, Kraszewski A, Nelson SO (1997) Simultaneous determination of density and water content of particulate materials by microwave sensors. Electron Lett 33(10):874–876

    CAS  Google Scholar 

  • Tran VN, Stuchly SS (1987) Dielectric properties of beef, beef liver, chicken and salmon at frequencies from 100 to 2,500 MHz. J Microw Power 22(1):29–33

    CAS  Google Scholar 

  • Tran VN, Stuchly SS, Kraszewski AW (1984) Dielectric properties of selected vegetables and fruits 0.1–10 GHz. J Microw Power 19(4):251–258

    Google Scholar 

  • Tulasidas TN, Raghavan GSV, Mujumdar AS (1995) Microwave drying of grapes in a single mode cavity at 2,450 MHz-II: quality and energy aspects. Drying Technol 13(8–9):1973–1992

    CAS  Google Scholar 

  • Ueno A, Shu Z, Takahashi T (2008) Determination of spectral wavelengths for detecting bruise defects on apple fruits. J Jpn Soc Agric Machinery 70(5):63–68

    Google Scholar 

  • Vadivambal R, Jayas SD (2010) Applications of thermal imaging in agriculture and food industrya review. Food Bioprocess Technol. doi:10.1007/s11947-010-0333-5, Accepted

    Google Scholar 

  • Van Dyke D, Wang DIC, Goldblith SA (1969) Dielectric loss factor of reconstituted ground beef: the effect of chemical composition. Food Technol 23(7):944–946

    Google Scholar 

  • Van Linden V, Vereycken R, Bravo C, Ramon H, De Baerdemaeker J (2003) Detection technique for tomato bruise damage by thermal imaging. Acta Horti ISHS 599:389–394

    Google Scholar 

  • Varith J, Hyde GM, Baritelle AL, Fellman JK, Sattabongkot T (2003) Non-contact bruise detection in apples by thermal imaging. Innovative Food Science and Emerging Technologies 4:211–218

    Google Scholar 

  • Venkatesh MS (2002) Development of integrated dual frequency permittivity analyzer using cavity perturbation concept. Unpublished Ph.D. thesis. Montreal, QC: Department of Agricultural and Biosystems Eng, McGill University

  • Venkatesh MS, Raghavan GSV (2004) An overview of microwave processing and dielectric properties of agri-food materials. Biosystem Eng 88:1–18

    Google Scholar 

  • Venkatesh MS, Raghavan GSV (2005) An overview of dielectrical properties measuring techniques. Can Biosyst Eng 47:7.15–7330

    Google Scholar 

  • Venkatesh MS, Raghavan GSV, Sotocinal SA (1998) Development of a permittivity analyzer to operate at 915 and 2450MHz using Cavity perturbation Technique. Paper # 98-315, presented at the CSAE annual meeting, AIC’98, UBC, Vancouver, Canada, 4–8 July

  • Veraverbeke EA, Verboven P, Lammertyn J, Cronje P, De Baerdemaeker J, Nicolai BM (2006) Thermographic surface quality evaluation of apple. J Food Eng 77:162–168

    Google Scholar 

  • Wang S, Ikediala JN, Tang J, Hansen JD, Mitcham E, Mao R, Swanson B (2001) Radio frequency treatments to control codling moth in in-shell walnuts. Postharvest Biol Technol 22(1):29–38

    Google Scholar 

  • Wang Y, Wig TD, Tang J, Hallberg LM (2003) Dielectric properties of foods relevant to RF and microwave pasteurisation and sterilization. J Food Eng 57:257–268

    Google Scholar 

  • Wang S, Monzon M, Gazit Y, Tang J, Mitcham EJ, Armstrong JW (2005) Temperature dependent dielectric properties of selected subtropical and tropical fruit and associated insect pests. Trans ASAE 48(5):1873–1881

    Google Scholar 

  • Wang S, Birla SL, Tang J, Hansen JD (2006a) Postharvest treatment to control codling moth in fresh apples using water assisted radio frequency heating. Postharvest Biol Technol 40(1):89–96

    CAS  Google Scholar 

  • Wang S, Tang J, Sun T, Mitcham EJ, Koral T, Birla SL (2006b) Considerations in design of commercial radio frequency treatments for postharvest pest control in in-shell walnuts. J Food Eng 77:304–312

    Google Scholar 

  • Wang Yu, Tang J, Rasco B, Kong F, Wang S (2008) Dielectric properties of salmon fillets as a function of temperature and composition. J Food Eng 87(2):236–246

    Google Scholar 

  • Warmann C, Märgner V (2005) Quality control of hazel nuts using thermographic image processing 3–17, MVA2005 IAPR Conference on Machine Vision Applications, May 16–18, 2005, Tsukuba Science City, Japan

  • Zhang L, Lyng JG, Brunton N, Morgan D, McKenna B (2004) Dielectric and thermo physical properties of meat batters over a temperature range of 5–85 °C. Meat Sci 68:173–184

    Google Scholar 

  • Zhang Lu, Lyng James G, Brunton Nigel P (2007) The effect of fat, water and salt on the thermal and dielectric properties of meat batter and its temperature following microwave or radio frequency heating. J Food Eng 80:142–151

    Google Scholar 

  • Zhao JW, Liu JH, Chen QS, Vittayapadung S (2008) Detecting subtle bruises on fruits with hyperspectral imaging. Trans Chin Soc Agric Machinery 39(1):106–109

    Google Scholar 

  • Zheng M, Huang YW, Nelson SO, Bartley PG, Gates KW (1998) Dielectric properties and thermal conductivity of marinated shrimp and channel catfish. J Food Sci 63(4):668–672

    CAS  Google Scholar 

  • Zuercher JL, Hoppie R, Lade S, Srinivasan MD (1990) Measurement of the complex permittivity of bread dough by open-ended coaxial line method at ultra-high frequency. J Microw Power Electromagn Energy 25(3):161–167

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Agricultural Innovation Project (NAIP), Indian Council of Agricultural Research (ICAR) through its subproject entitled “Development of non-destructive systems for evaluation of microbial and physico-chemical quality parameters of mango” Code number “C1030”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Narayan Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, S.N., Narsaiah, K., Basediya, A.L. et al. Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods—a review. J Food Sci Technol 48, 387–411 (2011). https://doi.org/10.1007/s13197-011-0263-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0263-x

Keywords

Navigation