Skip to main content
Log in

Infrared drying of sweet potato (Ipomoea batatas L.) slices

  • Original Paper
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The effect of different infrared power levels (104, 125, 146 and 167 W) on drying kinetics and rehydration ratio of sweet potato slices was investigated. It was observed that the power levels affected the drying time and rehydration ratio. The increase in infrared power level decreased the drying time. The experimental data obtained from drying study were fitted with Newton, Henderson and Pabis and Logarithmic models to evaluate the drying kinetics of the sweet potato slices. The fit quality of the proposed models was evaluated by using the determination of coefficient (R 2), mean relative percent error (P), reduced chi-square (χ 2) and root means square error (RMSE). Among the three drying models, the Logarithmic model gave a better fit over the other two models. Effective diffusivity varied from 1.31 × 10−10 to 3.66 × 10−10 m2/s and was significantly influenced by infrared power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a, c:

Drying coefficients

Deff :

Effective diffusivity (m2/s)

d:

Slice thickness (mm)

k:

Drying rate constant (1/min)

L :

Half-thickness of the slab in samples (m)

MRexp,i :

Experimental dimensionless moisture ratio

MRpre,i :

Experimental dimensionless moisture ratio

Me :

Equilibrium moisture content (kg water/kg dry matter)

M0 :

Initial moisture content (kg water/kg dry matter)

Mt :

Moisture content at any time of drying (kg water/kg dry matter)

Mt+dt :

Moisture content at t+dt (kg water/kg dry matter)

N:

Number of observations

n:

Constant positive integer

P:

Mean relative percent error

R2 :

Determination of coefficient

RMSE:

Root means square error

T:

Temperature (°C)

t:

Drying time (min)

z:

Number of coefficients and constants

χ 2 :

Reduced chi-square

References

  • Aghbashlo M, Kianmehr MH, Arabhoseini A (2009) Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Convers Manage 50:1348–1355

    Article  CAS  Google Scholar 

  • Aina AJ, Falade KO, Akingbala JO, Titus P (2010) Physicochemical properties of Caribbean sweet potato (Ipomoea batatas (L) Lam) starches. Food Bioprocess Technol doi:10.1007/s11947-009-0316-6, Article in Press, January 12, 2010

  • Akissoé N, Hounhouigan J, Mestres C, Nago M (2003) How blanching and drying affect the colour and functional characteristics of yam (Dioscorea cayenensis-rotundata) flour. Food Chem 82:257–264

    Article  Google Scholar 

  • Akpinar EK (2008) Mathematical modeling and experimental investigation on sun and solar drying of white mulberry. J Mech Sci Technol 22:1544–1553

    Article  Google Scholar 

  • Akpinar E, Midilli A, Bicer Y (2003) Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convers Manage 44:1689–1705

    Article  Google Scholar 

  • Antonio GC, Alves DG, Azoubel OM, Murr FEX, Park KJ (2008) Influence of osmotic dehydration and high temperature short time processes on dried sweet potato (Ipomoea batatas Lam.). J Food Eng 84:375–382

    Article  Google Scholar 

  • AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington DC

    Google Scholar 

  • Basavaraj M, Prabhu Kumar GP, Sathyanarayana Reddy B (2008) Determination of drying rate and moisture ratio of fig fruit (Ficus carica L.) by thin layer hot air drying method. J Food Sci Technol 45:94–96

    Google Scholar 

  • Caglar A, Togrul IT, Togrul H (2009) Moisture and thermal diffusivity of seedless grape under infrared drying. Food Bioprod Process 87:292–300

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Cunningham SE, Mcminn WAM, Magee TRA, Richardson PS (2008) Experimental study of rehydration kinetics of potato cylinders. Food Bioprod Process 86:15–24

    Article  Google Scholar 

  • Diamante LM, Munro PA (1993) Mathematical modelling of thin layer solar drying of sweet potato slices. Sol Energy 51:271–276

    Article  Google Scholar 

  • El-Beltagy A, Gamea GR, Amer Essa AH (2007) Solar drying characteristics of strawberry. J Food Eng 78:456–464

    Article  Google Scholar 

  • Erbay Z, Icier F (2010) Thin-layer drying behaviours of olive leaves (Olea Europaea L.). J Food Process Eng 33:287–308

    Article  Google Scholar 

  • Falade KO, Solademi OJ (2010) Modelling of air drying of fresh and blanched sweet potato slices. Int J Food Sci Technol 45:278–288

    Article  CAS  Google Scholar 

  • Falade KO, Olurin TO, Ike EA, Aworh OC (2007) Effect of pretreatment and temperature on air-drying of Dioscorea alata and Dioscorea rotundata slices. J Food Eng 80:1002–1010

    Article  Google Scholar 

  • FAO (2010) FaoStat: Agriculture Data. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (September 02, 2010)

  • Feng H, Tang J (1998) Microwave finish drying of diced apples in a spouted bed. J Food Sci 63:679–683

    Article  CAS  Google Scholar 

  • Hassini L, Azzouz S, Peczalski R, Belghith A (2007) Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. J Food Eng 79:47–56

    Article  Google Scholar 

  • Hatamipour MS, Kazemi HH, Nooralivand A, Nozarpoor A (2007) Drying characteristics of six varieties of sweet potatoes in different dryers. Food Bioprod Process 85(C3):171–177

    Article  Google Scholar 

  • Henderson SM, Pabis S (1961) Grain drying theory. II. Temperature effects on drying coefficients. J Agric Eng Res 6:169–174

    Google Scholar 

  • Kocabiyik H, Tezer D (2009) Drying of carrot slices using infrared radiation. Int J Food Sci Technol 44:953–959

    Article  CAS  Google Scholar 

  • Kumar DGP, Hebbar HU, Ramesh MN (2006) Suitability of thin layer models for infrared-hot air-drying of onion slices. LWT Food Sci Technol 39:700–705

    Article  CAS  Google Scholar 

  • Madamba PS (2003) Thin layer drying models for osmotically pre-dried young coconut. Dry Technol 21:1759–1780

    Article  Google Scholar 

  • Nowak D, Lewicki PP (2004) Infrared drying of apple slices. Innovative Food Sci Emerg Technol 5:353–360

    Article  Google Scholar 

  • Ruiz Celma A, López-Rodríguez F, Cuadros Blázquez F (2009) Experimental modelling of infrared of drying of industrial grape by-products. Food Bioprod Process 87:247–253

    Article  Google Scholar 

  • Sacilik K, Elicin AK (2006) The thin layer drying characteristics of organic apple slices. J Food Eng 73:281–289

    Article  Google Scholar 

  • Sharma GP, Verma RC, Pathare PB (2005) Thin-layer infrared radiation drying of onion slices. J Food Eng 67:361–366

    Article  Google Scholar 

  • Shi J, Pan Z, McHugh TH, Wood D, Hirschberg E, Olson D (2008) Drying and quality characteristics of fresh and sugar-infused blueberries dries with infrared radiation heating. LWT Food Sci Technol 41:1962–1972

    Article  CAS  Google Scholar 

  • Singh S, Raina CS, Bawa AS, Saxena DC (2006) Effect of pretreatments on drying and rehydration kinetics and color of sweet potato slices. Dry Technol 24:1487–1494

    Article  CAS  Google Scholar 

  • Sinija VR, Mishra HN (2009) Thin-layer modelling for drying of pressed tea leaf residue to produce green tea. J Food Sci Technol 46:515–524

    Google Scholar 

  • Sobukola OP, Dairo OU, Odunewu AV (2008) Convective hot air drying of blanched yam slices. Int J Food Sci Technol 43:1233–1238

    Article  CAS  Google Scholar 

  • Xiao HW, Lin H, Yao XD, Du ZL, Lou Z, Gao ZC (2009) Effects of different pretreatments on drying kinetics and quality of sweet potato bars undergoing air impingement drying. Int J Food Eng 5(5):Article 5

  • Zogzas NP, Maroulis ZB, Marinos-Kouris D (1996) Moisture diffusivity data compilation in foodstuffs. Dry Technol 14:2225–2253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Doymaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doymaz, İ. Infrared drying of sweet potato (Ipomoea batatas L.) slices. J Food Sci Technol 49, 760–766 (2012). https://doi.org/10.1007/s13197-010-0217-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-010-0217-8

Keywords

Navigation