Skip to main content
Log in

Mechanical and morphological analyses of flamboyant seed pod biochar/aluminium filings reinforced hybrid polystyrene composite

  • Original Article
  • Published:
Journal of the Indian Academy of Wood Science Aims and scope Submit manuscript

Abstract

Electrical conductivity can be improved in polymer composites by adding reinforcement components like metallic particles and/or high carbon-containing materials. In this study, highly conductive composites were produced from waste particles by reinforcing waste polystyrene with Aluminium powder and flamboyant seed (Delonix regia) pod-derived biochar. The composites were made using the mixing and hand layup method, and they were allowed to cure for 7 days at room temperature (25 °C). The composites were characterized by scanning electron microscopy (SEM), the Rockwell hardness test, and the Izod impact test. The SEM analysis generally shows a good interaction between the matrix and the filler as more penetration of the matrix was allowed into the highly porous structures of the biochar and aluminium. The polystyrene resin was shown to become less brittle when biochar and Aluminium were added, enhancing its toughness and capacity to absorb energy. Aluminium was found to be the main filler contributing to the material’s roughness, as the roughness decreased as the Aluminium content increased. This study provided insights on the production of valuable products from waste resources.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdulkareem SA, Adeniyi AG (2017) Tensile and water absorbing properties of natural fibre reinforced plastic composites from waste polystyrene and rice husk. Nig J Technol Dev 14(1):18–22

    Article  Google Scholar 

  • Abdulkareem SA, Adeniyi AG (2018) Preparation and evaluation of electrical properties of plastic composites developed from recycled polystyrene and local clay. Nig J Technol Dev 15(3):98–101

    Article  Google Scholar 

  • Abdulkareem SA, Amosa MK, Adeniyi AG, Adeoye SA, Ajayi AK (2019a) Development of natural fibre reinforced polystyrene (NFRP) composites: impact resistance study. IOP Conf Ser Mater Sci Eng 640:012059. https://doi.org/10.1088/1757-899x/640/1/012059

    Article  CAS  Google Scholar 

  • Abdulkareem S, Ighalo J, Adeniyi A (2021) Evaluation of the electrical characteristics of recycled iron reinforced polystyrene composites. Iran J Energy Environ 12(2):125–130

    CAS  Google Scholar 

  • Abdulkareem S, Amosa M, Adeniyi A (2018) Synthesis and structural analysis of aluminium-filled polystyrene composites from recycled wastes

  • Abdulkareem SA, Amosa MK, Adeniyi AG, Magaji MM, Ajibola RA (2019) Effect of metallic fillers on the hardness of polystyrene composites: an experimental investigation. In: IOP conference series: materials science and engineering, November 2019. Vol 640, No 1. IOP Publishing, p 012058

  • Aboyade AO, Hugo TJ, Carrier M, Meyer EL, Stahl R, Knoetze JH, Görgens JF (2011) Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim Acta 517(1–2):81–89

    Article  CAS  Google Scholar 

  • Adelodun AA, Adeniyi AG, Ighalo JO, Onifade DV, Arowoyele LT (2020) Thermochemical conversion of oil palm fiber-LDPE hybrid waste into biochar. Biofuels, Bioprod Biorefin 14(6):1313–1323. https://doi.org/10.1002/bbb.2130

    Article  CAS  Google Scholar 

  • Adeniyi AG, Abdulkareem SA, Ighalo JO, Onifade DV, Sanusi SK (2020b) Thermochemical Co-conversion of sugarcane bagasse-LDPE hybrid waste into biochar. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-05119-9

    Article  Google Scholar 

  • Adeniyi AG, Onifade DV, Abdulkareem SA, Amosa MK, Ighalo JO (2020d) Valorization of plantain stalk and polystyrene wastes for composite development. J Polym Environ. https://doi.org/10.1007/s10924-020-01796-7

    Article  Google Scholar 

  • Adeniyi AG, Ighalo JO, Adeyanju CA (2021d) Materials-to-product potentials for sustainable development in Nigeria. Int J Sustain Eng 14(4):664–671

    Article  Google Scholar 

  • Adeniyi AG, Abdulkareem SA, Emenike EC, Abdulkareem MT, Iwuozor KO, Amoloye MA, Awokunle OE (2022) Development and characterization of microstructural and mechanical properties of hybrid polystyrene composites filled with kaolin and expanded polyethylene powder. Results Eng 14:100423

    Article  CAS  Google Scholar 

  • Adeniyi AG, Abdulkareem SA, Ighalo JO, Abdulkareem MT, Iwuozor KO, Emenike EC (2022b) A study on the hybrid polystyrene composite filled with elephant-grass-biochar and doped-aluminium-content. Funct Compos Struct 4(3):035006

    Article  Google Scholar 

  • Adeniyi AG, Abdulkareem SA, Iwuozor KO, Abdulkareem MT, Adeyanju CA, Emenike EC, Ndagi M, Akande OJ (2022) Mechanical and microstructural properties of expanded polyethylene powder/mica filled hybrid polystyrene composites. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2022.2059822

    Article  Google Scholar 

  • Adeniyi AG, Abdulkareem SA, Odimayomi KP, Emenike EC, Iwuozor KO (2022d) Production of thermally cured polystyrene composite reinforced with aluminium powder and clay. Environ Chall 9:100608

    Article  CAS  Google Scholar 

  • Adeniyi AG, Ighalo JO, Onifade DV (2021) Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels 12(10):1283-1290. https://doi.org/10.1080/17597269.2019.1613751

  • Adeniyi AG, Abdulkareem SA, Ighalo JO, Onifade DV, Adeoye SA, Sampson AE (2022) Morphological and thermal properties of polystyrene composite reinforced with biochar from elephant grass (Pennisetum purpureum). J Thermoplast Compos Mater 35(10):1532-1547. https://doi.org/10.1177/0892705720939169

  • Adeniyi AG, Ighalo JO, Abdulkareem SA (2021) Al, Fe and Cu waste metallic particles in conductive polystyrene composites. Int J Sustain Eng 14(4):893-898. https://doi.org/10.1080/19397038.2020.1793426

  • Adeniyi AG, Abdulkareem SA, Adeoye SA (2022) Preparation and properties of wood dust (isoberlinia doka) reinforced polystyrene composites. Polym Bull 79:4361–4379. https://doi.org/10.1007/s00289-021-03718-6

  • Adeniyi AG, Abdulkareem SA, Ighalo JO, Oladipo-Emmanuel FM, Adeyanju CA (2022) Microstructural and mechanical properties of the plantain fiber/local clay filled hybrid polystyrene composites. Mech Adv Mater Struct 29(28):7104-7114. https://doi.org/10.1080/15376494.2021.1992692

  • Adeniyi AG, Abdulkareem SA, Ighalo JO, Saliu OD, Amosa MK, Momoh RO (2022) Crystallographic, Functional Group and Microstructural Properties of Oil Palm Biochar Reinforced Hybrid Polystyrene Composite Doped with Aluminium. Adv Mater Process Technol 8(3):2893-2904. https://doi.org/10.1080/2374068X.2021.1945288

  • Adeniyi A, Iwuozor K, Emenike E, Amoloye M, Aransiola E, Motolani F, Kayode S (2023a) Prospects and problems in the development of biochar-filled plastic composites: a review. Funct Compos Struct

  • Adeniyi AG, Amusa VT, Iwuozor KO, Emenike EC (2023b) Valorization of waste biaxially-oriented polypropylene (BOPP) plastic films by its Co-carbonization with Almond leaves. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.14064

    Article  Google Scholar 

  • Adeniyi AG, Amusa VT, Emenike EC, Iwuozor KO (2023c) Co-carbonization of waste biomass with expanded polystyrene for enhanced biochar production. Biofuels. https://doi.org/10.1080/17597269.2022.2161133

  • Adeniyi AG, Iwuozor KO, Emenike EC (2023d) One-step chemical activation for the production of engineered orange peel biochar. Emerg Mater 6:211–221. https://doi.org/10.1007/s42247-022-00442-3

  • Ajala OJ, Ighalo JO, Adeniyi AG, Ogunniyi S, Adeyanju CA (2020) Contamination issues in sachet and bottled water in Nigeria: a mini-review. Sustain Water Res Manag 6(6):112. https://doi.org/10.1007/s40899-020-00478-5

    Article  Google Scholar 

  • Alserai SJ, Alsaraj WK, Abass ZW (2018) Effect of iron filings on the mechanical properties of different types of sustainable concrete. Open Civ Eng J 12(1):441–457. https://doi.org/10.2174/187414950181201044

    Article  Google Scholar 

  • Bachtiar D, Sapuan S, Khalina A, Zainudin E, Dahlan K (2012) The flexural, impact and thermal properties of untreated short sugar palm fibre reinforced high impact polystyrene (HIPS) composites. Polym Polym Compos 20(5):493–502

    CAS  Google Scholar 

  • Choi S, Kim J (2013) Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos B Eng 51:140–147

    Article  CAS  Google Scholar 

  • Chun KS, Subramaniam V, Yeng CM, Meng PM, Ratnam CT, Yeow TK, How CK (2019) Wood plastic composites made from post-used polystyrene foam and agricultural waste. J Thermoplast Compos Mater 32(11):1455–1466. https://doi.org/10.1177/0892705718799836

    Article  CAS  Google Scholar 

  • Das C, Tamrakar S, Kiziltas A, Xie X (2021) Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers 13(16):2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emenike EC, Adeniyi AG, Omuku PE, Okwu KC, Iwuozor KO (2022a) Recent advances in nano-adsorbents for the sequestration of copper from water. J Water Proc Eng 47:102715

    Article  Google Scholar 

  • Emenike EC, Iwuozor KO, Agbana SA, Otoikhian KS, Adeniyi AG (2022b) Efficient recycling of disposable face masks via co-carbonization with waste biomass: a pathway to a cleaner environment. Clean Environ Syst 6:100094

    Article  Google Scholar 

  • Emenike EC, Ogunniyi S, Ighalo JO, Iwuozor KO, Okoro HK, Adeniyi AG (2022c) Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresour Technol Rep 19:101195

    Article  CAS  Google Scholar 

  • Emenike EC, Iwuozor KO, Anidiobi SU (2022) Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biol Trace Elem Res 200:4476–4492. https://doi.org/10.1007/s12011-021-03037-x

  • Haldar P, Modak N, Sutradhar G (2017) Comparative evaluation of mechanical properties of sisal-epoxy composites with and without addition of aluminium powder. Mater Today Proc 4(2):3397–3406

    Article  Google Scholar 

  • Hwang S, Reyes EI, Moon K-S, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777

    Article  CAS  Google Scholar 

  • Ighalo JO, Adeniyi AG (2020) Utilization of recycled polystyrene and aluminum wastes in the development of conductive plastic composites: evaluation of electrical properties. In: Hussain CM (ed) Handbook of environmental materials management. Springer Nature, Switzerland, pp 1–9

    Google Scholar 

  • Ighalo JO, Adeniyi AG, Abdulkareem SA (2021a) Thermal, functional group and microstructural analysis of fibrillated composites developed from polystyrene and plantain stalk wastes. Mater Perform Charact 10(1):341–352

    CAS  Google Scholar 

  • Ighalo JO, Arowoyele LT, Ogunniyi S, Adeyanju CA, Oladipo-Emmanuel FM, Belgore OR, Omisore MO, Adeniyi AG (2021) Utilisation of biomass and hybrid biochar from elephant grass and low density polyethylene for the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) from aqueous media. Recent Innov Chem Eng 14(2):148–159. https://doi.org/10.2174/2405520413999201117143926

    Article  CAS  Google Scholar 

  • Ighalo JO, Onifade DV, Adeniyi AG (2021) Retort-heating carbonisation of almond (Terminalia catappa) leaves and LDPE waste for biochar production: evaluation of product quality. Int J Sustain Eng. https://doi.org/10.1080/19397038.2021.1886371

    Article  Google Scholar 

  • Im H, Kim J (2011) Enhancement of the thermal conductivity of aluminum oxide–epoxy terminated poly (dimethyl siloxane) with a metal oxide containing polysiloxane. J Mater Sci 46(20):6571–6580

    Article  CAS  Google Scholar 

  • Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z, Shao Q, Chao Wang H, Liu NL, Wei R, Subramania A, Guo Z (2019) Electromagnetic interference shielding polymers and nanocomposites—a review. Polym Rev 59(2):280–337. https://doi.org/10.1080/15583724.2018.1546737

    Article  CAS  Google Scholar 

  • Kumar R, Gunjal J, Chauhan S (2021) Effect of carbonization temperature on properties of natural fiber and charcoal filled hybrid polymer composite. Compos B Eng 217:108846

    Article  CAS  Google Scholar 

  • Kurt E, Özçelik CY, Yetgin S, Ömürlü FÖ, Balköse D (2013) Preparation and characterization of flexible polyvinylchloridecopper composite films. Polym Polym Compos 21(3):139–144

    CAS  Google Scholar 

  • Li S, Li X, Deng Q, Li D (2015) Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties. Mater Des 85:54–59

    Article  CAS  Google Scholar 

  • Mamunya YP, Davydenko VV, Pissis P, Lebedev EV (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polymer J 38:1887–1897

    Article  CAS  Google Scholar 

  • Osman AF, Mariatti M (2006) Properties of aluminum filled polypropylene composites. Polym Polym Compos 14(6):623–633

    CAS  Google Scholar 

  • Pargi MNF, Teh PL, Hussiensyah S, Yeoh CK, Ghani SA (2015) Recycled-copper-filled epoxy composites: the effect of mixed particle size. Int J Mech Mater Eng. https://doi.org/10.1186/s40712-015-0030-2

    Article  Google Scholar 

Download references

Funding

There was no external funding for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adewale George Adeniyi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Human and animal rights

This article does not contain any studies involving human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniyi, A.G., Abdulkareem, S.A., Adeyanju, C.A. et al. Mechanical and morphological analyses of flamboyant seed pod biochar/aluminium filings reinforced hybrid polystyrene composite. J Indian Acad Wood Sci 20, 28–36 (2023). https://doi.org/10.1007/s13196-023-00311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13196-023-00311-4

Keywords

Navigation