De Feo G, Antoniou G, Fardin HF, El-Gohary F, Zheng XY, Reklaityte I, Butler D, Yannopoulos S, Angelakis AN. The historical development of sewers worldwide. Sustainability. 2014;6:3936–74. https://doi.org/10.3390/su6063936.
Article
Google Scholar
Vallabhaneni S. Wastewater collection systems. Water Environ Res. 2018;90(10):885–99. https://doi.org/10.2175/106143018X15289915807065.
CAS
Article
PubMed
Google Scholar
Mao K, Hua Z, Pan Y, et al. Biosensors for wastewater-based epidemiology for monitoring public health. Water Res. 2021;1(191):116787. https://doi.org/10.1016/j.watres.2020.116787.
CAS
Article
Google Scholar
Zuccato E, Chiabrando C, Castiglioni S, Bagnati R, Fanelli R. Estimating community drug abuse by wastewater analysis. Environ Health Perspect. 2008;116(8):1027–32. https://doi.org/10.1289/ehp.11022.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schröder P, Helmreich B, Škrbić B, et al. Status of hormones and painkillers in wastewater effluents across several European states—considerations for the EU watch list concerning estradiols and diclofenac. Environ Sci Pollut Res. 2016;23:12835–66. https://doi.org/10.1007/s11356-016-6503-x.
CAS
Article
Google Scholar
Daughton CG. Wastewater surveillance for population-wide COVID-19. The present and future. Sci Total Environ. 2020;736:139631. https://doi.org/10.1016/j.scitotenv.2020.139631.
CAS
Article
PubMed
PubMed Central
Google Scholar
Castiglioni S. Assessing illicit drugs in wastewater: advances in wastewater-based drug epidemiology. Luxembourg: European Monitoring Centre for Drugs and Drug Addiction (EMCDDA); 2016. p. 82 (Insights 22).
Google Scholar
Endo N, Ghaeli N, Duvallet C, Foppe K, Erickson TB, Matus M, Chai PR. Rapid assessment of opioid exposure and treatment in cities through robotic collection and chemical analysis of wastewater. J Med Toxicol. 2020;16(2):195–203. https://doi.org/10.1007/s13181-019-00756-5.
Article
PubMed
PubMed Central
Google Scholar
Wu F, Xiao A, Zhang J, Moniz K, Endo N, Armas F, Bushman M, Chai PR, Duvallet C, Erickson TB, Foppe K, Ghaeli N, Gu X, Hanage WP, Huang KH, Wei LL, Matus M, McElroy KA, Rhode SF, Wuertz S, Thompson J, Alm EJ. Wastewater surveillance of SARS-CoV-2 across 40 U.S States. medRxiv 2021.03.10.21253235; https://doi.org/10.1101/2021.03.10.21253235.
Thompson JR, Nancharaiah YV, Gu X, Lee WL, Rajal VB, Haines MB, Girones R, Ng LC, Alm EJ, Wuertz S. Making waves: wastewater surveillance of SARS-CoV-2 for population-based health management. Water Res. 2020;1(184):116181. https://doi.org/10.1016/j.watres.2020.116181.
CAS
Article
Google Scholar
Betancourt WQ, Schmitz BW, Innes GK, Prasek SM, Pogreba Brown KM, Stark ER, Foster AR, Sprissler RS, Harris DT, Sherchan SP, Gerba CP, Pepper IL. COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Sci Total Environ. 2021;13(779):146408. https://doi.org/10.1016/j.scitotenv.2021.146408.
CAS
Article
Google Scholar
Symonds EM, Nguyen KH, Harwood VJ, Breitbart M. Pepper mild mottle virus: a plant pathogen with a greater purpose in (waste)water treatment development and public health management. Water Res. 2018;1(144):1–12. https://doi.org/10.1016/j.watres.2018.06.066.
CAS
Article
Google Scholar
Gyawali P, Croucher D, Ahmed W, Devane M, Hewitt J. Evaluation of pepper mild mottle virus as an indicator of human faecal pollution in shellfish and growing waters. Water Res. 2019;1(154):370–6. https://doi.org/10.1016/j.watres.2019.02.003.
CAS
Article
Google Scholar
Wu F, Zhang J, Xiao A, Gu X, Lee WL, Armas F, Kauffman K, Hanage W, Matus M, Ghaeli N, Endo N, Duvallet C, Poyet M, Moniz K, Washburne AD, Erickson TB, Chai PR, Thompson J, Alm EJ. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. mSystems. 2020;5(4):e00614–20. https://doi.org/10.1128/mSystems.00614-20.
National Wastewater Surveillance System (NWSS) A new public health tool to understand COVID-19 spread in a community. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/wastewater-surveillance.html. Accessed 1 Apr 2021.
Prasse C, Schlüsener MP, Schulz R, Ternes TA. Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance? Environ Sci Technol. 2010;44(5):1728–35.
CAS
Article
Google Scholar
Singer AC, Järhult JD, Grabic R, et al. Compliance to oseltamivir among two populations in Oxfordshire, United Kingdom affected by influenza A(H1N1)pdm09, November 2009–a waste water epidemiology study. PLoS One. 2013;8(4):e60221.
CAS
Article
Google Scholar
Sims N, Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ Int. 2020;139:105689. https://doi.org/10.1016/j.envint.2020.105689.
Bivins, North D, Ahmad A, et al. Wastewater-based epidemiology: global collaborative to maximize contributions in the fight against COVID-19. Environ Sci Technol. 2020;54(13):7754–7.
CAS
Article
Google Scholar
Murakami M, Hata A, Honda R, Watanabe T. Letter to the Editor: Wastewater-based epidemiology can overcome representativeness and stigma issues related to COVID-19. Environ Sci Technol. 2020;54(9):5311–5311.
CAS
Article
Google Scholar
Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic. Science. 2020;368(6493):860–8. https://doi.org/10.1126/science.abb5793.
CAS
Article
PubMed
Google Scholar
Rousis NI, Gracia-Lor E, Reid MJ, Baz-Lomba JA, Ryu Y, Zuccato E, Thomas KV, Castiglioni S. Assessment of human exposure to selected pesticides in Norway by wastewater analysis. Sci Total Environ. 2020;25(723): 138132. https://doi.org/10.1016/j.scitotenv.2020.138132.
CAS
Article
Google Scholar
Devault DA, Karolak S. Wastewater-based epidemiology approach to assess population exposure to pesticides: a review of a pesticide pharmacokinetic dataset. Environ Sci Pollut Res Int. 2020;27(5):4695–702. https://doi.org/10.1007/s11356-019-07521-9.
CAS
Article
PubMed
Google Scholar
Bozyigit GD, Ayyildiz MF, Chormey DS, Engoin GO, Bakirdere S. Development of a sensitive and accurate method for the simultaneous determination of selected insecticides and herbicide in tap water and wastewater samples using vortex-assisted switchable solvent-based liquid-phase microextraction prior to determination by gas chromatography-mass spectrometry. Environ Monit Assess. 2020;192(5):275. https://doi.org/10.1007/s10661-020-08266-6.
CAS
Article
PubMed
Google Scholar
Markosian C, Mirzoyan N. Wastewater-based epidemiology as a novel assessment approach for population-level metal exposure. Sci Total Environ. 2019;689:1125–32. https://doi.org/10.1016/j.scitotenv.2019.06.419.
CAS
Article
PubMed
Google Scholar
Reuter P, Caulkins JP, Midgette G. Heroin use cannot be measured adequately with a general population survey. Addiction. 2021. https://doi.org/10.1111/add.15458.
Article
PubMed
Google Scholar
Gushgari AJ, Venkatesan AK, Chen J, Steele JC, Halden RU. Long-term tracking of opioid consumption in two United States cities using wastewater-based epidemiology approach. Water Res. 2019;15(161):171–80. https://doi.org/10.1016/j.watres.2019.06.003.
CAS
Article
Google Scholar
Du P, Thai PK, Bai Y, Zhou Z, Xu Z, Zhang X, Wang J, Zhang C, Hao F, Li X. Monitoring consumption of methadone and heroin in major Chinese cities by wastewater-based epidemiology. Drug Alcohol Depend. 2019;1(205):107532. https://doi.org/10.1016/j.drugalcdep.2019.06.034.
CAS
Article
Google Scholar
Duvallet C, Hayes BD, Erickson TB, Chai PR, Matus M. Mapping community opioid exposure through wastewater-based epidemiology as a means to engage pharmacies in harm reduction efforts. Prev Chronic Dis. 2020;17:200053. https://doi.org/10.5888/pcd17.200053externalicon.
Article
Google Scholar
O’Rourke CE, Subedi B. Occurrence and mass loading of synthetic opioids, synthetic cathinones, and synthetic cannabinoids in wastewater treatment plants in four U.S. communities. Environ Sci Technol. 2020;54(11):6661–70. https://doi.org/10.1021/acs.est.0c00250.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bade R, Abdelaziz A, Nguyen L, Pandopulos AJ, White JM, Gerber C. Determination of 21 synthetic cathinones, phenethylamines, amphetamines and opioids in influent wastewater using liquid chromatography coupled to tandem mass spectrometry. Talanta. 2020;208:120479.
CAS
Article
Google Scholar
How ZT, El-Din MG. A critical review on the detection, occurrence, fate, toxicity, and removal of cannabinoids in the water system and the environment. Environ Pollut. 2021;268(Pt A): 115642. https://doi.org/10.1016/j.envpol.2020.115642.
CAS
Article
PubMed
Google Scholar
Neumann NR, Chai PR, Wood DM, Greller HA, Mycyk MB. Medical Toxicology and COVID-19: our role in a pandemic. J Med Toxicol. 2020;16(3):245–7. https://doi.org/10.1007/s13181-020-00778-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Khatri UG, Perrone J. Opioid use disorder and COVID-19: crashing of the crises. J Addict Med. 2020;14(4):e6–7. https://doi.org/10.1097/ADM.0000000000000684.
CAS
Article
PubMed
Google Scholar
Gladden MR, O’Donnell J, Mattson CL, Seth P. Changes in opioid-involved overdose deaths by opioid type and presence of benzodiazepines, cocaine, and methamphetamine — 25 states, July–December 2017 to January–June 2018. M MWR Morb Mortal Wkly Rep. 2019;68(34):737–44.
Article
Google Scholar
Prekupec Matthew P, Mansky Peter A, Baumann MH. Misuse of novel synthetic opioids: a deadly new trend. J Addict Med. 2017;11(4):256–65.
Article
Google Scholar
Armenian P, Vo KT, Barr-Walker J, Lynch KL. Fentanyl, fentanyl analogs and novel synthetic opioids: a comprehensive review. Neuropharmacology. 2018;134(Pt A):121–32. https://doi.org/10.1016/j.neuropharm.2017.10.016.
CAS
Article
PubMed
Google Scholar
Foppe KS, Kujawinski EB, Duvallet C, Endo N, Erickson TB, Chai PR, Matus M. Analysis of 39 drugs and metabolites, including 8 glucuronide conjugates, in an upstream wastewater network via HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1176:122747.
CAS
Article
Google Scholar
Campos-Mañas MC, Ferrer I, Thurman EM, Sánchez Pérez JA, Agüera A. Identification of opioids in surface and wastewaters by LC/QTOF-MS using retrospective data analysis. Sci Total Environ. 2019;10(664):874–84. https://doi.org/10.1016/j.scitotenv.2019.01.389.
CAS
Article
Google Scholar
Bade R, Ghetia M, Nguyen L, Tscharke BJ, White JM, Gerber C. Simultaneous determination of 24 opioids, stimulants and new psychoactive substances in wastewater. MethodsX. 2019;19(6):953–60. https://doi.org/10.1016/j.mex.2019.04.016.
Article
Google Scholar
Drug Education, Julie: The fourth wave of the drug epidemic has hit. December 6, 2019. https://www.narconon-colorado.org/blog/the-fourth-wave-of-the-drug-epidemic-has-hit.html
Hainer R: Polysubstance use: the fourth wave of the opioid crisis. HealthCity, BMC, June 13, 2019 https://www.bhchp.org/news/polysubstance-use-and-stimulants-dangerous-fourth-wave-opioid-crisis
Boni MR, Chiavola A, Di Marcantonio C, Sbaffoni S, Biagioli S, Cecchini G, Frugis A. A study through batch tests on the analytical determination and the fate and removal of methamphetamine in the biological treatment of domestic wastewater. Environ Sci Pollut Res Int. 2018;25(28):27756–67. https://doi.org/10.1007/s11356-018-1321-y.
CAS
Article
PubMed
Google Scholar
Boles TH, Wells MJ. Analysis of amphetamine and methamphetamine in municipal wastewater influent and effluent using weak cation-exchange SPE and LC-MS/MS. Electrophoresis. 2016;37(23–24):3101–8. https://doi.org/10.1002/elps.201600271.
CAS
Article
PubMed
Google Scholar
Shao XT, Liu YS, Tan DQ, Wang Z, Zheng XY, Wang DG. Methamphetamine use in typical Chinese cities evaluated by wastewater-based epidemiology. Environ Sci Pollut Res Int. 2020;27(8):8157–65. https://doi.org/10.1007/s11356-019-07504-w.
CAS
Article
PubMed
Google Scholar
Li J, Hou L, Du P, Yang J, Li K, Xu Z, Wang C, Zhang H, Li X. Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis. Sci Total Environ. 2014;490:724–32. https://doi.org/10.1016/j.scitotenv.2014.05.042.
CAS
Article
PubMed
Google Scholar
Lai FY, O’Brien JW, Thai PK, Hall W, Chan G, Bruno R, Ort C, Prichard J, Carter S, Anuj S, Kirkbride KP, Gartner C, Humphries M, Mueller JF. Cocaine, MDMA and methamphetamine residues in wastewater: consumption trends (2009–2015) in South East Queensland. Australia Sci Total Environ. 2016;568:803–9. https://doi.org/10.1016/j.scitotenv.2016.05.181.
CAS
Article
PubMed
Google Scholar
Wilkins C, Lai FY, O’Brien J, Thai P, Mueller JF. Comparing methamphetamine, MDMA, cocaine, codeine and methadone use between the Auckland region and four Australian states using wastewater-based epidemiology (WBE). N Z Med J. 2018;131(1478):12–20.
PubMed
Google Scholar
Löve ASC, Baz-Lomba JA, Reid MJ, Kankaanpää A, Gunnar T, Dam M, Ólafsdóttir K, Thomas KV. Analysis of stimulant drugs in the wastewater of five Nordic capitals. Sci Total Environ. 2018;627:1039–47. https://doi.org/10.1016/j.scitotenv.2018.01.274.
CAS
Article
PubMed
Google Scholar
Meyer MR, Vollerthun T, Hasselbach R. Prevalence and distribution patterns of amphetamine and methamphetamine consumption in a federal state in southwestern Germany using wastewater analysis. Drug Alcohol Depend. 2015;156:311–4. https://doi.org/10.1016/j.drugalcdep.2015.09.006.
CAS
Article
PubMed
Google Scholar
Krizman I, Senta I, Ahel M, Terzic S. Wastewater-based assessment of regional and temporal consumption patterns of illicit drugs and therapeutic opioids in Croatia. Sci tot Environ. 2016;566–67:454–62.
Article
Google Scholar
Xu Z, Du P, Li K, Gao T, Wang Z, Fu X, Li X. Tracing methamphetamine and amphetamine sources in wastewater and receiving waters via concentration and enantiomeric profiling. Sci Total Environ. 2017;601–602:159–66. https://doi.org/10.1016/j.scitotenv.2017.05.045.
CAS
Article
PubMed
Google Scholar
Gao J, Xu Z, Li X, O’Brien JW, Culshaw PN, Thomas KV, Tscharke BJ, Mueller JF, Thai PK. Enantiomeric profiling of amphetamine and methamphetamine in wastewater: a 7-year study in regional and urban Queensland, Australia. Sci Total Environ. 2018;1(643):827–34. https://doi.org/10.1016/j.scitotenv.2018.06.242.
CAS
Article
Google Scholar
Watanabe K, Batikian CM, Pelley D, et al. Occurrence of stimulant drugs of abuse in a San Diego, CA, stream and their consumption rates in the neighboring community. Water Air Soil Pollut. 2020;231:202.
CAS
Article
Google Scholar
González-Mariño I, Estévez-Danta A, Rodil R, Da Silva KM, Sodré FF, Cela R, Quintana JB. Profiling cocaine residues and pyrolytic products in wastewater by mixed-mode liquid chromatography-tandem mass spectrometry. Drug Test Anal. 2019;11(7):1018–27. https://doi.org/10.1002/dta.2590.
CAS
Article
PubMed
Google Scholar
Centazzo N, Frederick BM, Jacox A, Cheng SY, Concheiro-Guisan M. Wastewater analysis for nicotine, cocaine, amphetamines, opioids and cannabis in New York City. Forensic Sci Res. 2019;4(2):152–67. https://doi.org/10.1080/20961790.2019.1609388.
Article
PubMed
PubMed Central
Google Scholar
Zarei S, Salimi Y, Repo E, Daglioglu N, Safaei Z, Güzel E, Asadi A. A global systematic review and meta-analysis on illicit drug consumption rate through wastewater-based epidemiology. Environ Sci Pollut Res Int. 2020;27(29):36037–51. https://doi.org/10.1007/s11356-020-09818-6.
CAS
Article
PubMed
Google Scholar
Song XB, Shao XT, Liu SY, Tan DQ, Wang Z, Wang DG. Assessment of metformin, nicotine, caffeine, and methamphetamine use during Chinese public holidays. Chemosphere. 2020;258:127354. https://doi.org/10.1016/j.chemosphere.2020.127354.
CAS
Article
PubMed
Google Scholar
Rodríguez-Álvarez T, Racamonde I, González-Mariño I, Borsotti A, Rodil R, Rodríguez I, Zuccato E, Quintana JB, Castiglioni S. Alcohol and cocaine co-consumption in two European cities assessed by wastewater analysis. Sci Total Environ. 2015;536:91–8. https://doi.org/10.1016/j.scitotenv.2015.07.016.
CAS
Article
PubMed
Google Scholar
Mackuľak T, Brandeburová P, Grenčíková A, Bodík I, Staňová AV, Golovko O, Koba O, Mackuľaková M, Špalková V, Gál M, Grabic R. Music festivals and drugs: wastewater analysis. Sci Total Environ. 2019;659:326–34. https://doi.org/10.1016/j.scitotenv.2018.12.275.
CAS
Article
PubMed
Google Scholar
Choi PM, Tscharke BJ, Donner E, et al. Wastewater-based epidemiology biomarkers: past, present and future. Trac-Trends Anal Chem. 2018;105:453–69.
CAS
Article
Google Scholar
Lai FY, Ort C, Gartner C, et al. Refining the estimation of illicit drug consumptions from wastewater analysis: co-analysis of prescription pharmaceuticals and uncertainty assessment. Water Res. 2011;45(15):4437–48.
CAS
Article
Google Scholar
Phung D, Mueller J, Lai FY, et al. Can wastewater-based epidemiology be used to evaluate the health impact of temperature? – An exploratory study in an Australian population. Environ Res. 2017;156:113–9.
CAS
Article
Google Scholar
Thai PK, Lai FY, Edirisinghe M, et al. Monitoring temporal changes in use of two cathinones in a large urban catchment in Queensland Australia. Sci Total Environ. 2016;545–546:250–5.
Article
Google Scholar
Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3–27.
Ahmed F, Tscharke B, O'Brien JW, Cabot PJ, Hall WD, Mueller JF, Thomas KV. Can wastewater analysis be used as a tool to assess the burden of pain treatment within a population? Environ Res. 2020;188:109769. https://doi.org/10.1016/j.envres.2020.109769.
Wang S, Green HC, Wilder ML, Du Q, Kmush BL , Collins MB , Larsen DA , Zeng T. High throughput wastewater analysis for substance use assessment in central New York during the COVID-19 pandemic. Environ 61 Sci Process Impacts. 2020;22(11):2147–2161.
Cruz-Cruz C, Vidaña-Pérez D, Mondragón Y Kalb M, Martínez-Ruiz MJ, Olaiz-Fernández G, Hernández-Lezama LF, Hernández-Ávila M, Barrientos-Gutiérrez T. Medición de drogasilícitas en aguas residuales: estudio piloto en México [Assessing illicit drugs in wastewater: a pilot study in Mexico]. Salud Publica Mex. 2019;61(4):461–469. Spanish.
Moslah B, Hapeshi E, Jrad A, Fatta-Kassinos D, Hedhili A. Pharmaceuticals and illicit drugs in wastewater samples in north-eastern Tunisia. Environ Sci Pollut Res Int. 2018;25(19):18226–18241.
Archer E, Castrignanò E, Kasprzyk-Hordern B, Wolfaardt GM. Wastewaterbased epidemiology and enantiomeric profiling for drugs of abuse in South African wastewaters. Sci Total Environ. 2018;625:792–800. https://doi.org/10.1016/j.scitotenv.2017.12.269.
Hendriksen RS, Munk P, Njage, P. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019;10:1124. https://doi.org/10.1038/s41467-019-08853-362.
Orive G, Lertxundi U, Barcelo D. Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Sci Total Environ. 2020;732:139298. https://doi.org/10.1016/j.scitotenv.2020.139298.
Hernández F, Castiglioni S, Covaci A, et al. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater. Mass Spectrom Rev.2018;37 (3):258–280.
Chen Y, Liu J, Yang Z, Wilkinson JS, Zhou X. Optical biosensors based on refractometric sensing schemes: a review. Biosens Bioelectron. 2019;144, Article 111693.
Daughton CG. Monitoring wastewater for assessing community health: Sewage chemical-information mining (SCIM). Sci Total Environ 2018;619–620:748–764. https://doi.org/10.1016/j.scitotenv.2017.11.102.
Thai PK, Jiang G, Gernjak W, Yuan Z, Lai FY, Mueller JF. Effects of sewer conditions on the degradation of selected illicit drug residues in wastewater. Water Res. 2014;48:538–47. https://doi.org/10.1016/j.watres.2013.10.019.
Friedler E, Butler D, Alfiya Y. Wastewater composition. In: Larsen TA, Udert KM, Lienert J, editors. Source separation and decentralization for 63 wastewater management. chapter 17 IWA Publishing; London. 2013. pp. 241–257.
McCall AK, Bade R, Kinyua J, Lai FY, Thai PK, Covaci A, et al. Critical review on the stability of illicit drugs in sewers and wastewater samples. Water Res. 2016;88:933–947.