Skip to main content
Log in

Multinomial Logistic Mixed Models for Clustered Categorical Data in a Complex Survey Sampling Setup

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

In a finite/survey population setup, where categorical/multinomial responses are collected from individuals belonging to a cluster, in a recent study Skinner (International Statistical Review, 87, S64-S78 2019) has modeled the means of the clustered categorical responses as a function of regression parameters, and suggested a ‘working’ correlations based GEE (generalized estimating equations) approach for the estimation of the regression parameters. However, this mean model involving only regression parameters is not justified for clustered multinomial responses because of the fact that these responses share a common cluster effect which compels the clustered correlation parameter to enter into the mean function on top of the regression parameters. Consequently, the so-called GEE approach, which requires the means to be free of correlations, is not applicable for regression analysis in the clustered multinomial setup. As a remedy, in this paper we consider a multinomial mixed model which accommodates the clustered correlation parameter in the mean functions. For inferences in the present finite population setup, as the GQL (generalized quasi-likelihood) approach is known to produce consistent and more efficient estimate than the MM (method of moments) approach in an infinite population setup, we estimate the regression parameters of primary interest by using the first order response based survey weighted GQL (WGQL) approach. For the estimation of the random effects variance (also known as clustered correlation) parameter, as it is of secondary interest, we use the second order response based survey weighted MM (WMM) approach, which is simpler than the corresponding WGQL estimation approach. The estimation steps are presented clearly for the benefit to the practitioners. Also because, in practice, survey practitioners such as statistical agencies frequently deal with a large health or socio-economic data set at national or state levels, for example, we make sure for their benefit that our proposed WGQL and WMM estimators are consistent. Thus, the asymptotic properties such as asymptotic unbiasedness and consistency for both regression and clustered correlation parameters are studied in details. The asymptotic normality property, for the benefit of constructing confidence interval for the main regression parameters, is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya, T. (1985). Advanced econometrics. Harvard University Press, Cambridge.

    Google Scholar 

  • Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of American Statistical Association 88, 9–25.

    MATH  Google Scholar 

  • Cochran, W. G. (1977). Sampling techniques. Wiley, New York.

    MATH  Google Scholar 

  • Godambe, V. P. and Thompson, M. E. (1986). Parameters of super-population and survey population: their relationships and estimation. International Statistical Review 54, 127–138.

    Article  MathSciNet  Google Scholar 

  • Lee, Y. and Nelder, J. (1996). Hierarchical generalized linear models. Journal of Royal Statistical Society. B 58, 619–678.

    MATH  Google Scholar 

  • Lee, S. E., Lee, P. R. and Shin, K. (2016). A composite estimator for stratified two stage cluster sampling. Communications for Statistical Applications and Methods 23, 47–55.

    Article  Google Scholar 

  • Laing, K. -Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22.

    Article  MathSciNet  Google Scholar 

  • Mccullagh, P. (1983). Quasilikelihood functions. Annals of Statistics11, 59–67.

    Article  MathSciNet  Google Scholar 

  • McCullagh, P. and Nelder, J. A (1989). Generalized linear models. Chapman and Hall, London.

    Book  Google Scholar 

  • McDonald, D. R. (2005). The local limit theorem: a historical perspective. J. Iran. Stat. Soc. 4, 73–86.

    MATH  Google Scholar 

  • Molina, E. A. and Skinner, C. J. (1992). Pseudo-likelihood and quasi-likelihood estimation for complex sampling schemes. Computational Statistics and Data Analysis 13, 395–405.

    Article  MathSciNet  Google Scholar 

  • Molina, E. A., Smith, T. M. F. and Sugden, R. A. (2001). Modelling overdispersion for complex survey data. Int. Stat. Rev. 69, 373–384.

    Article  Google Scholar 

  • Pfeffermann, D. (1993). The role of sampling weights when modelling survey data. Int. Statist. Rev. 61, 317–337.

    Article  Google Scholar 

  • Rao, R. P., Sutradhar, B. C. and Pandit, V. N. (2012). GMM And GQL inferences in linear dynamic panel data models. Brazilian Journal of Probability and Statistics 26, 167–177.

    MathSciNet  MATH  Google Scholar 

  • Roberts, G., Rao, J. N. K. and Kumar, S. (1987). Logistic regression analysis of sample survey data. Biometrika 74, 1–12.

    Article  MathSciNet  Google Scholar 

  • Roberts, G., REN, Q. and RAO, J. N. K. (2009). Using marginal mean models for data from longitudinal surveys with a complex design: some advances in methods. Wiley, Chichester, Lynn, P. (ed.), p. 351–366.

  • Skinner, C. J. and Vieira, M. D. T. (2007). Variance estimation in the analysis of clustered longitudinal survey data. Survey Methodolgy 33, 3–12.

    Google Scholar 

  • Skinner, C. (2019). Analysis of categorical data for complex surveys. International Statistical Review 87, S64–S78.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B. C. and Kovacevic, M. (2000). Analyzing ordinal longitudinal survey data: Generalized estimating equations approach. Biomerika 87, 837–848.

    Article  Google Scholar 

  • Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Stat. Sci. 18, 377–393.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B. C. (2004). On exact quasi-likelihood inference in generalized linear mixed models. Sankhya B: The Indian Journal of Statistics 66, 261–289.

    Google Scholar 

  • Sutradhar, B. C. (2014). Longitudinal categorical data analysis. Springer, New York.

    Book  Google Scholar 

  • Sutradhar, B. C. (2018a). A parameter dimension-split based asymptotic regression estimation theory for a multinomial panel data model. Sankhya A: The Indian Journal of Statistics 80, 301–329.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B. C. and Zheng, N. (2018b). Inferences in binary dynamic fixed models in a semi-parametric setup. Sankhya B 80, 263–291.

    Article  MathSciNet  Google Scholar 

  • Ten Have, T. R. and Morabia, A. (1999). Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics 55, 85–93.

    Article  Google Scholar 

  • Valliant, R. (1987). Generalized variance functions in stratified two-stage sampling. Journal of American Statistical Association 82, 499–508.

    Article  MathSciNet  Google Scholar 

  • Wedderburn, R. (1974). Quasilikelihood functions, generalized linear models and the Gauss-Newton method. Biometrika 61, 439–447.

    MathSciNet  MATH  Google Scholar 

  • Weisstein, E. W. (2002). Newton’s method. http://mathworld.wolfram.com.

  • Zheng, N. and Sutradhar, B. C. (2018). Generalized quasi-likelihood inference in a semi-parametric binary dynamic mixed logit model. Australian and New Zealand Journal of Statistics 60, 343–373.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported partially by an NSERC grant. The author thanks two referees and the Associated Editor for their comments and suggestions that lead to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra C. Sutradhar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof for the Design Unbiased Property of the Estimating Functions (4.1) of β, and Eq. 4.4 of \(\sigma ^{2}_{\gamma }\)

Appendix A1: Proof for the Estimating Function (4.1) of β

Here we check the design (D) unbiasedness of \(\hat {\tau }_{\beta |\sigma ^{2}_{\gamma }}(y;\cdot )\) (4.1) for \(\tau _{\beta |\sigma ^{2}_{\gamma }}(y;\cdot )\) in Eq. 3.9, by taking the design expectation (ED) as

$$ \begin{array}{@{}rcl@{}} &&{}E_{D}\left[\hat{\tau}_{\beta|\sigma^{2}_{\gamma}}(y;\cdot)\right] =E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1}\tilde{w}_{cs^{*}}z_{cis^{*}}(y|\beta,\sigma^{2}_{\gamma})\right] \\ &&{}=E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1}\frac{K}{k}\frac{N_{c}}{n_{c}}z_{cis^{*}}(y|\beta, \sigma^{2}_{\gamma})\right] = E_{C}\frac{K}{k}{\sum}^{k}_{c=1}N_{c}E_{|C}\left[\frac{1}{n_{c}} {\sum}^{n_{c}}_{i=1}z_{cis^{*}}(y|\beta,\sigma^{2}_{\gamma})\right], \end{array} $$
(a.1)

where EC denotes the expectation over the clusters (C) and E|C is the expectation over the individuals within a given cluster. Hence,

$$ \begin{array}{@{}rcl@{}} &&E_{D}\left[\hat{\tau}_{\beta|\sigma^{2}_{\gamma}}(y;\cdot)\right] =E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1}\tilde{w}_{cs^{*}}z_{cis^{*}}(y|\beta,\sigma^{2}_{\gamma})\right]\\ &=&E_{C}\frac{K}{k}{\sum}^{k}_{c=1}N_{c}\left[\frac{1}{N_{c}}{\sum}^{N_{c}}_{i=1}z_{ci}(y|\beta,\sigma^{2}_{\gamma})\right] =KE_{C}\frac{1}{k}{\sum}^{k}_{c=1}\left\{{\sum}^{N_{c}}_{i=1}z_{ci}(y|\beta,\sigma^{2}_{\gamma})\right\}\\ &=&K\frac{1}{K}{\sum}^{K}_{c=1}\left\{{\sum}^{N_{c}}_{i=1}z_{ci}(y|\beta,\sigma^{2}_{\gamma})\right\} ={\sum}^{K}_{c=1}{\sum}^{N_{c}}_{i=1}z_{ci}(y|\beta,\sigma^{2}_{\gamma}), \end{array} $$
(a.2)

which is the hypothetical estimating function (HEF) in the left hand side of the HEE in Eq. 3.9.

Appendix A2: Proof for the Estimating Function (4.4) of \(\sigma ^{2}_{\gamma }\)

Notice that by similar calculations as in (a.2) for β estimation, one can show that the first term in Eq. 4.4 is an unbiased estimating function for the first term in Eq. 3.24. That is,

$$ \begin{array}{@{}rcl@{}} E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1}\tilde{w}_{cs^{*}}g_{1,cis^{*}} (p_{cis^{*}}|\beta,\sigma^{2}_{\gamma})\right]= {\sum}^{K}_{c=1}{\sum}^{N_{c}}_{i=1}g_{1,ci}(p_{ci}|\beta,\sigma^{2}_{\gamma}). \end{array} $$
(a.3)

However, the design expectation (ED) of the second term in Eq. 4.4 is given by

$$ \begin{array}{@{}rcl@{}} &&E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}(n_{c}-1)/2}_{h=1}\tilde{w}_{cs^{*}} g_{2,chs^{*}}(q_{c,hs^{*}}(y)|\beta,\sigma^{2}_{\gamma})\right] \\ &=&E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}(n_{c}-1)/2}_{h=1}\frac{K}{k}\frac{N_{c}}{n_{c}} g_{2,chs^{*}}(q_{c,hs^{*}}(y)|\beta,\sigma^{2}_{\gamma})\right]\\ &=&E_{C}\frac{K}{k}{\sum}^{k}_{c=1}[N_{c}(n_{c}-1)/2]E_{|C}\\ &&\times \left[\frac{1}{n_{c}(n_{c}-1)/2}{\sum}^{n_{c}(n_{c}-1)/2}_{h=1} g_{2,chs^{*}}(q_{c,hs^{*}}(y)|\beta,\sigma^{2}_{\gamma}) \right]\\ &=&E_{C}\frac{K}{k}{\sum}^{k}_{c=1}[N_{c}(n_{c}-1)/2]\\ &&\times\left[\frac{1}{n_{c}(n_{c}-1)/2} \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}{\sum}^{N_{c}(N_{c}-1)/2}_{h=1} g_{2,ch}(q_{c,h}(y)|\beta,\sigma^{2}_{\gamma})\right]\\ &=&E_{C}\frac{K}{k}{\sum}^{k}_{c=1}\frac{n_{c}-1}{N_{c}-1} \left[{\sum}^{N_{c}(N_{c}-1)/2}_{h=1} g_{2,ch}(q_{c,h}(y)|\beta,\sigma^{2}_{\gamma})\right]\\ &=&{\sum}^{K}_{c=1}\frac{n_{c}-1}{N_{c}-1} \left[{\sum}^{N_{c}(N_{c}-1)/2}_{h=1} g_{2,ch}(q_{c,h}(y)|\beta,\sigma^{2}_{\gamma})\right]\\ &&\neq {\sum}^{K}_{c=1}{\sum}^{N_{c}(N_{c}-1)/2}_{h=1} g_{2,ch}(q_{c,h}(y)|\beta,\sigma^{2}_{\gamma})). \end{array} $$
(a.4)

Hence, when eq. a.4 is combined with Eq. a.3, it follows that the naive estimating function \(\hat {\tau }_{NMM,\sigma ^{2}_{\gamma }|\beta }(y;\cdot )\) in (4.4) is not an unbiased estimating function for the HEF, in the left hand side of (3.24). However, by a bias correction adjustment, one can construct an unbiased function as done in (4.5).

Appendix B: Asymptotic Unbiasedness and Variance of the Survey Weighted GQL Estimator \(\hat {\beta }_{WGQL}\)

Asymptotic Unbiasedness:

By Eq. 5.2 we write

$$ \begin{array}{@{}rcl@{}} &&E\left[\hat{\beta}_{WGQL}-\beta\right] \simeq -\left[E_{D}{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1} \frac{K}{k}\frac{N_{c}}{n_{c}} \frac{\partial {z}_{cis^{*}}(\beta)}{\partial \beta'} \right]^{-1} \\ &\times & E_{Y}E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1} \frac{K}{k}\frac{N_{c}}{n_{c}} {z}_{cis^{*}}\right]+o_{p}(1/\sqrt{n}). \end{array} $$
(b.1)

To compute the expectations involved in Eq. b.1, first we write from Eq. b.2 that

$$ \begin{array}{@{}rcl@{}} &&E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1} \frac{K}{k}\frac{N_{c}}{n_{c}} {z}_{cis^{*}}\right]={\sum}^{K}_{c=1}{\sum}^{N_{c}}_{i=1} z_{ci}, \end{array} $$
(b.2)

implying that

$$ \begin{array}{@{}rcl@{}} &&E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1}\frac{K}{k}\frac{N_{c}}{n_{c}}\frac{\partial z_{cis^{*}}}{\partial \beta'}\right] {\rightarrow}_{p} E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1}\frac{K}{k}\frac{N_{c}}{n_{c}}\frac{\partial z_{cis^{*}}}{\partial \beta'}\right] \\ &=&{\sum}^{K}_{c=1}{\sum}^{N_{c}}_{i=1}\frac{\partial z_{ci}} {\partial \beta'}. \end{array} $$
(b.3)

Next because

$${\sum}^{N_{c}}_{i=1}z_{ci}(\cdot)={\sum}^{N_{c}}_{i=1}a'_{ci}(y_{ci}-\pi_{ci}(\cdot)) =\frac{\partial \pi'_{c}(\beta,\sigma^{2}_{\gamma})}{\partial \beta}{\Sigma}^{-1}_{c} (\beta,{\sigma^{2}_{\gamma}})(y_{c}-\pi_{c}(\beta,\sigma^{2}_{\gamma}))$$

by Eq. 3.10, it follows from Eqs. b.2 and b.3 that

$$ \begin{array}{@{}rcl@{}} E_{Y}E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1} \frac{K}{k}\frac{N_{c}}{n_{c}} {z}_{cis^{*}}\right]&=&0, \text{and} \end{array} $$
(b.4)
$$ \begin{array}{@{}rcl@{}} E_{D}\left[{\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1}\frac{K}{k}\frac{N_{c}}{n_{c}}\frac{\partial z_{cis^{*}}}{\partial \beta'}\right]&=&{\sum}^{K}_{c=1} \frac{\partial \pi'_{c}(\beta,\sigma^{2}_{\gamma})}{\partial \beta}{\Sigma}^{-1}_{c} (\beta,{\sigma^{2}_{\gamma}})\frac{\partial \pi_{c}(\beta,\sigma^{2}_{\gamma})}{\partial \beta'} \\ &=&\tilde{G}(\beta,\sigma^{2}_{\gamma}), \text{as in (\ref{Equ63})}, \end{array} $$
(b.5)

respectively.

Consequently, by applying (b.4) and (b.5), it follows from Eq. b.1 that

$$ \begin{array}{@{}rcl@{}} &&E\left[\hat{\beta}_{WGQL}-\beta\right] \simeq o_{p}(1/\sqrt{n})=0, \end{array} $$
(b.6)

as \(n \rightarrow N \rightarrow \infty ,\) showing that \(\hat {\beta }_{WGQL}\) is asymptotically unbiased for β.

Computation of

\(\text {cov}\left ({\sum }^{k}_{c=1}{\sum }^{n_{c}}_{i=1}\tilde {w}_{cs^{*}}z_{cis^{*}} \right )\) Notice that as the sample of size \(n={\sum }^{k}_{c=1}n_{c}\) is selected from the FP of size \(N={\sum }^{K}_{c=1}N_{c}\) by using the TSCS, it then follows that

$$ \begin{array}{@{}rcl@{}} &&V^{*}_{n}(\beta,\sigma^{2}_{\gamma}) = \text{cov}\left( \sum^{k}_{c=1}\sum^{n_{c}}_{i=1}\tilde{w}_{cs^{*}}z_{cis^{*}}\right) = \text{cov}\left[\frac{K}{k}\sum^{k}_{c=1}N_{c} \frac{1}{n_{c}}\sum^{n_{c}}_{i=1}z_{ci}\right]\\ &=&\text{cov}_{C}\left[\frac{K}{k}\sum^{k}_{c=1}N_{c} E_{|C}\left\{\frac{1}{n_{c}}\sum^{n_{c}}_{i=1}z_{hci}\right\}\right]\\ &&+E_{C}\left[(K^{2}/k^{2})\sum^{k}_{c=1}{N^{2}_{c}} \text{cov}_{|C}\left\{\frac{1}{n_{c}}\sum^{n_{c}}_{i=1}z_{hci}\right\} \right]. \end{array} $$
(b.7)

Now computing the within and between clustered expectations and covariances, one simplifies (b.7) and obtains \(V^{*}(\beta ,\sigma ^{2}_{\gamma }) = \text {cov}\left ({\sum }^{k}_{c=1}{\sum }^{n_{c}}_{i=1}\tilde {w}_{cs^{*}}z_{cis^{*}} \right )\) as in Eq. 5.8 under Section 5.1.

Asymptotic Variance of the Regression Estimator \(\hat {\beta }_{WGQL}:\)

Because \(\hat {\beta }_{WGQL},\) by Eq. b.6, is asymptotically unbiased for β, by applying (b.5) and (b.7), it follows from (5.2) (see also Eq. b.1) that

$$ \begin{array}{@{}rcl@{}} &&\lim_{{\sum}^{k}_{c=1}n_{c}=n\rightarrow N \rightarrow \infty}\text{cov}[\hat{\beta}_{WGQL}]\\ &=&\left[ {\sum}^{K}_{c=1} \frac{\partial \pi'_{c}(\beta,\sigma^{2}_{\gamma})}{\partial \beta}{\Sigma}^{-1}_{c} (\beta,{\sigma^{2}_{\gamma}})\frac{\partial \pi_{c}(\beta,\sigma^{2}_{\gamma})}{\partial \beta'} \right]^{-1} \text{cov}\left( {\sum}^{k}_{c=1}{\sum}^{n_{c}}_{i=1}\tilde{w}_{cs^{*}}z_{cis^{*}} \right) \\ &&\times \left[ {\sum}^{K}_{c=1} \frac{\partial \pi'_{c}(\beta,\sigma^{2}_{\gamma})}{\partial \beta}{\Sigma}^{-1}_{c} (\beta,{\sigma^{2}_{\gamma}})\frac{\partial \pi_{c}(\beta,\sigma^{2}_{\gamma})}{\partial \beta'} \right]^{-1}\\ &=&\tilde{G}^{-1}(\beta,\sigma^{2}_{\gamma})V^{*}_{n}(\beta,\sigma^{2}_{\gamma}) \tilde{G}^{-1}(\beta,\sigma^{2}_{\gamma}), \end{array} $$
(b.8)

which, as expected, is the same as the covariance matrix of the normal distribution given by (5.26).

Appendix C: Proof for Consistency of the Survey Weighted MM Estimator \(\hat {\sigma }^{2}_{\gamma ,WMM}\)

Because \(\hat {\sigma }^{2}_{\gamma , WMM}\) is the solution of the WMM estimating equation (4.5), a first order Taylor series expansion of the estimating function in the left hand side of (4.5) about \(\sigma ^{2}_{\gamma }\) provides

$$ \begin{array}{@{}rcl@{}} &&\hat{\sigma}^{2}_{\gamma,WMM} - \sigma^{2}_{\gamma} \simeq - \left[{\sum}^{k}_{c=1}\tilde{w}_{cs^{*}}\left\{\frac{\partial \lambda'_{p_{cs^{*}}}}{\partial \sigma^{2}_{\gamma}}\frac{\partial \lambda_{p_{cs^{*}}}}{\partial \sigma^{2}_{\gamma}} +\frac{N_{c}-1}{n_{c}-1} \frac{\partial \lambda'_{q_{cs^{*}}}}{\partial \sigma^{2}_{\gamma}} \frac{\partial \lambda_{q_{cs^{*}}}}{\partial \sigma^{2}_{\gamma}}\right\}\right]^{-1} \\ &\times & \left[{\sum}^{k}_{c=1}\tilde{w}_{cs^{*}}\left\{\frac{\partial \lambda'_{p_{cs^{*}}}}{\partial \sigma^{2}_{\gamma}}(p_{cs^{*}}-\lambda_{p_{cs^{*}}}) +\frac{N_{c}-1}{n_{c}-1}\frac{\partial \lambda'_{q_{cs^{*}}}}{\partial \sigma^{2}_{\gamma}} (q_{cs^{*}}-\lambda_{q_{cs^{*}}})\right\}\right] \\ &+&o_{p}(1/\sqrt{n}), \end{array} $$
(c.1)

where \(n={\sum }^{k}_{c=1}n_{c}\) (see also (4.6)). For convenience of further calculations, we re-express the equation in Eq. c.1 as

$$ \begin{array}{@{}rcl@{}} \hat{\sigma}^{2}_{\gamma,WMM}-\sigma^{2}_{\gamma} \simeq -S^{-1}_{1}S_{2,y}+o_{p}(1/\sqrt{n}). \end{array} $$
(c.2)

Notice that S1 is free of responses, whereas S2, y contains the responses {y} because \(p_{cs^{*}}\) and \(q_{cs^{*}}\) in Eq. c.1 are functions of second order responses. More specifically, by (4.4) (see also (3.20)), \(p_{cs^{*}}\) is constructed by using the second order responses from the matrix {yciyci′} for c = 1, … , k; i = 1, … , nc, where by (1.7), yci is the (J − 1)-dimensional multinomial response vector. Similarly, \(q_{cs^{*}}\) is constructed by using the elements of second order response matrix {yciycm′} given in (3.12), for im; i, m = 1, … , nc. Consequently, one can show that

$$ \begin{array}{@{}rcl@{}} S_{1} &\rightarrow & E_{D}[S_{1}] \\ &=& {\sum}^{K}_{c=1}\left\{\frac{\partial \lambda'_{p_{c}}}{\partial \sigma^{2}_{\gamma}}\frac{\partial \lambda_{p_{c}}}{\partial \sigma^{2}_{\gamma}} +\frac{\partial \lambda'_{q_{c}}}{\partial \sigma^{2}_{\gamma}} \frac{\partial \lambda_{q_{c}}}{\partial \sigma^{2}_{\gamma}}\right\}. \end{array} $$
(c.3)

Suppose that this survey/finite population based quantity in Eq. c.3 is finite and bounded. More specifically, we assume that the following regularity condition holds:

C1.

For \(N={\sum }^{K}_{c=1}N_{c},\) let fN increases as N gets larger but it is a finite quantity. Also suppose that the scalar quantity in Eq. c.3 satisfies

$$ \begin{array}{@{}rcl@{}} \frac{1}{N} {\sum}^{K}_{c=1} \left\{\frac{\partial \lambda'_{p_{c}}}{\partial \sigma^{2}_{\gamma}}\frac{\partial \lambda_{p_{c}}}{\partial \sigma^{2}_{\gamma}} +\frac{\partial \lambda'_{q_{c}}}{\partial \sigma^{2}_{\gamma}} \frac{\partial \lambda_{q_{c}}}{\partial \sigma^{2}_{\gamma}}\right\}\leq f_{N}. \end{array} $$
(c.4)

By applying (c.4) to (c.3), one obtains the order of \(S^{-1}_{1}\) in Eq. c.2 as

$$ S^{-1}_{1} = O(N^{-1}f^{-1}_{N}). $$
(c.5)

Next, it is clear from Eq. c.1 that

$$ S_{2,y} \rightarrow_{p} E_{Y}E_{D}[S_{2,y}]=0, $$
(c.6)

in order of \([\text {var}(S_{2,y})]^{\frac {1}{2}}.\) To obtain this order we compute the variance var(S2, y) as follows:

$$ \begin{array}{@{}rcl@{}} &&\text{var}(S_{2,y})=\text{var} \left[{\sum}^{k}_{c=1}\tilde{w}_{cs^{*}}\left\{\frac{\partial \lambda'_{p_{cs^{*}}}}{\partial \sigma^{2}_{\gamma}}(p_{cs^{*}}-\lambda_{p_{cs^{*}}}) \right.\right.\\&&\left.\left.+\frac{N_{c}-1}{n_{c}-1}\frac{\partial \lambda'_{q_{cs^{*}}}}{\partial \sigma^{2}_{\gamma}} (q_{cs^{*}}-\lambda_{q_{cs^{*}}})\right\}\right]\\ &=&\text{var}\left[{\sum}^{k}_{c=1}\frac{K}{k} \frac{N_{c}}{n_{c}}\left\{{\sum}^{n_{c}}_{i=1}b'_{ci}(p_{ci}-\lambda_{p_{ci}}) \right. \right. \\ &+& \left. \left. \{(N_{c}-1)/(n_{c}-1)\} {\sum}^{n_{c}(n_{c}-1)/2}_{i=1}d'_{ci}(q_{ci}-\lambda_{q_{ci}})\right\} \right], \\ &&\text{by Eq.~\ref{Equ52} (see also Eqs.~\ref{Equ47}-\ref{Equ48})} \\ &=& (\frac{K}{k})^{2}{\sum}^{k}_{c=1}{N^{2}_{c}} \text{var}_{C}\left\{\frac{1}{n_{c}} {\sum}^{n_{c}}_{i=1}b'_{ci}(p_{ci}-\lambda_{p_{ci}}) \right. \\ &+& \left. \{(N_{c}-1)/2\}\frac{1}{n_{c}(n_{c}-1)/2} {\sum}^{n_{c}}_{i<j}d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})\right\}\\ &=&(\frac{K}{k})^{2}{\sum}^{k}_{c=1}{N^{2}_{c}} \left\{\frac{1}{{n^{2}_{c}}}\text{var}\left( {\sum}^{n_{c}}_{i=1}b'_{ci}(p_{ci}-\lambda_{p_{ci}})\right) \right. \\ &+&\frac{(N_{c}-1)^{2}}{[n_{c}(n_{c}-1)]^{2}}\text{var}\left( {\sum}^{n_{c}}_{i<j}d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})\right)\\ &+& \left. \frac{(N_{c}-1)}{[{n^{2}_{c}}(n_{c}-1)]}\text{cov} \left( {\sum}^{n_{c}}_{i=1}b'_{ci}(p_{ci} - \lambda_{p_{ci}}), {\sum}^{n_{c}}_{j<k}d'_{c,jk}(q_{c,jk} - \lambda_{q_{c,jk}})\right) \right\}, \end{array} $$
(c.7)

where the variances and covariances can be computed as follows.

$$ \begin{array}{@{}rcl@{}} &&V_{c,1}(\cdot)=\text{var}\left( {\sum}^{n_{c}}_{i=1}b'_{ci}(p_{ci}-\lambda_{p_{ci}})\right)\\ &=&\text{var}\left( {\sum}^{N_{c}}_{i=1}s_{i}b'_{ci}(p_{ci}-\lambda_{p_{ci}})\right) \\ &=&{\sum}^{N_{c}}_{i=1}b'_{ci}(p_{ci}-\lambda_{p_{ci}}) (p_{ci}-\lambda_{p_{ci}})'b_{ci}\text{var}(s_{i})\\ &+&2{\sum}^{N_{c}}_{i<j}b'_{ci}(p_{ci}-\lambda_{p_{ci}}) (p_{cj}-\lambda_{p_{cj}})'b_{cj}\text{cov}(s_{i},s_{j}), \end{array} $$
(c.8)

where si is a random indicator variable such that

$$ \begin{array}{@{}rcl@{}} s_{i}&=& \left\{ \begin{array}{ll} 1 & \text{if the \textit{i}th unit from the \textit{c}-th cluster is in the sample} \\ [2ex] 0 & \text{otherwise}\\ [2ex] \end{array} \right. \end{array} $$
(c.9)

[Cochran (1977, Section 2.9)]. It then follows that

$$ \begin{array}{@{}rcl@{}} E[s_{i}]=\frac{n_{c}}{N_{c}}, \text{var}(s_{i})=\frac{n_{c}}{N_{c}}(1-\frac{n_{c}}{N_{c}}), \end{array} $$
(c.10)

and

$$ \begin{array}{@{}rcl@{}} \text{cov}(s_{i},s_{j})&=&E(s_{i}s_{j})-E(s_{i})E(s_{j}) \\ &=&\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}-\left( \frac{n_{c}}{N_{c}}\right)^{2} =-\frac{n_{c}}{N_{c}(N_{c}-1)}(1-\frac{n_{c}}{N_{c}}). \end{array} $$
(c.11)

Hence by putting (c.11) and (c.10) in (c.8), we obtain the variance

$$ \begin{array}{@{}rcl@{}} V_{c,1}(\beta,\sigma^{2}_{\gamma})&=&\frac{n_{c}}{N_{c}}(1-\frac{n_{c}}{N_{c}}) {\sum}^{N_{c}}_{i=1}b'_{ci}(p_{ci}-\lambda_{p_{ci}}) (p_{ci}-\lambda_{p_{ci}})'b_{ci} \\ &-&2\frac{n_{c}}{N_{c}(N_{c}-1)}(1-\frac{n_{c}}{N_{c}}){\sum}^{N_{c}}_{i<j} b'_{ci}(p_{ci}-\lambda_{p_{ci}}) (p_{cj}-\lambda_{p_{cj}})'b_{cj}. \\ &=&\frac{n_{c}}{N_{c}}(1-\frac{n_{c}}{N_{c}})S^{*}_{1,N_{c}}(y) \\ &-&2\frac{n_{c}}{N_{c}(N_{c}-1)}(1-\frac{n_{c}}{N_{c}})S^{*}{2,N_{c}}(y), \text{(say)}. \end{array} $$
(c.12)

Notice that the computation of the remaining variance and the covariance is slightly more complicated because it will require the fourth order product moments of indicator random variables. Specifically, we write

$$ \begin{array}{@{}rcl@{}} &&V_{c,2}(\beta,\sigma^{2}_{\gamma}) =\text{var}\left( {\sum}^{n_{c}}_{i<j}d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})\right)\\ &=&\text{var}\left( {\sum}^{N_{c}}_{i<j}s_{i}s_{j}d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})\right)\\ &=&{\sum}^{N_{c}}_{i<j}\text{var}(s_{i}s_{j})d'_{c,ij} (q_{c,ij}-\lambda_{q_{c,ij}})(q_{c,ij}-\lambda_{q_{c,ij}})'d_{c,ij} \\ &+&{\sum}^{N_{c}}_{i<j,k<\ell}\text{cov}[s_{i}s_{j},s_{k}s_{\ell}] d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})(q_{c,k\ell}- \lambda_{q_{c,k\ell}})'d_{c,k\ell}, \end{array} $$
(c.13)

where

$$ \begin{array}{@{}rcl@{}} \text{var}(s_{i}s_{j})&=&E[{s^{2}_{i}}{s^{2}_{j}}]-\left( E(s_{i}s_{j})\right)^{2} =E[s_{i}s_{j}]-\left( E(s_{i}s_{j})\right)^{2}\\ &=&E[s_{i}s_{j}]\left( 1-E[s_{i}s_{j}]\right) \\ &=&\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[1- \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\right], \end{array} $$
(c.14)

by Eq. c.11. The covariance in Eq. c.13 is computed as

$$ \begin{array}{@{}rcl@{}} \text{cov}[s_{i}s_{j},s_{k}s_{\ell}] &=& \left\{ \begin{array}{ll} E[s_{i}s_{j}s_{k}s_{\ell}]-E[s_{i}s_{j}]E[s_{k}s_{\ell}] & \text{for} i\neq j \neq k \neq \ell \\ [2ex] E[s_{i}s_{j}s_{k}]-E[s_{i}s_{j}]E[s_{k}s_{\ell}] & \text{otherwise}\\ [2ex] \end{array} \right. \\ &=& \left\{ \begin{array}{ll} \frac{n_{c}(n_{c}-1)(n_{c}-2)(n_{c}-3)}{N_{c}(N_{c}-1) (N_{c}-2)(N_{c}-3)} - \left( \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\right)^{2} & \text{for} i\neq j \neq k \neq \ell \\ [2ex] \frac{n_{c}(n_{c}-1)(n_{c}-2)}{N_{c}(N_{c}-1) (N_{c}-2)}-\left( \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\right)^{2} & \text{otherwise}\\ [2ex] \end{array} \right. \\ &=& \left\{ \begin{array}{ll} \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[ \frac{(n_{c}-2)(n_{c}-3)}{ (N_{c}-2)(N_{c}-3)}- \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\right] & \text{for} i\neq j \neq k \neq \ell \\ [2ex] \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[ \frac{(n_{c}-2)}{(N_{c}-2)}- \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\right] & \text{otherwise}\\ [2ex] \end{array} \right. \\ &=&\left\{\begin{array}{ll} \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[ \delta_{1}(n_{c},N_{c})\right] & \text{for} i\neq j \neq k \neq \ell \\ [2ex] \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[\delta_{2}(n_{c},N_{c})\right] & \text{otherwise}\\ [2ex] \end{array} \right. \end{array} $$
(c.15)

Using Eqs. c.15 and c.14 in Eq. c.13, we obtain the formula for Vc,2(⋅) as

$$ \begin{array}{@{}rcl@{}} &&V_{c,2}(\beta,\sigma^{2}_{\gamma}) =\text{var}\left( {\sum}^{n_{c}}_{i<j}d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})\right)\\ &=&\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[1- \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\right] {\sum}^{N_{c}}_{i<j}d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}}) (q_{c,ij}-\lambda_{q_{c,ij}})'d_{c,ij} \\ &+&\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[ \delta_{1}(n_{c},N_{c})\right] {\sum}^{N_{c}}_{i \neq j \neq k \neq \ell} d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})(q_{c,k\ell}- \lambda_{q_{c,k\ell}})'d_{c,k\ell} \\ &+&\frac{n_{c}(n_{c} - 1)}{N_{c}(N_{c} - 1)}\left[ \delta_{2}(n_{c},N_{c})\right] \left\{{\sum}^{N_{c}}_{i <j, k <\ell, i=k} d'_{c,ij}(q_{c,ij} - \lambda_{q_{c,ij}})(q_{c,k\ell} - \lambda_{q_{c,k\ell}})'d_{c,k\ell} \right. \\ &+&{\sum}^{N_{c}}_{i <j, k <\ell, i=\ell} d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})(q_{c,k\ell}- \lambda_{q_{c,k\ell}})'d_{c,k\ell} \\ &+& {\sum}^{N_{c}}_{i <j, k <\ell, j=k} d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})(q_{c,k\ell}- \lambda_{q_{c,k\ell}})'d_{c,k\ell} \\ &+& \left. {\sum}^{N_{c}}_{i <j, k <\ell, j=\ell} d'_{c,ij}(q_{c,ij}-\lambda_{q_{c,ij}})(q_{c,k\ell}- \lambda_{q_{c,k\ell}})'d_{c,k\ell} \right\}\\ &=&\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[1- \frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\right]S^{*}_{3,N_{c}}(y) \\ &+&\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left[ \delta_{1}(n_{c},N_{c})S^{*}_{4,N_{c}}(y) + \delta_{2}(n_{c},N_{c})S^{*}_{5,N_{c}}(y) \right], \text{(say)}. \end{array} $$
(c.16)

Next we compute

$$ \begin{array}{@{}rcl@{}} &&V_{c,12}(\beta,\sigma^{2}_{\gamma})=\text{cov} \left( {\sum}^{n_{c}}_{i=1}b'_{ci}(p_{ci}-\lambda_{p_{ci}}), {\sum}^{n_{c}}_{j<k}d'_{c,jk}(q_{c,jk}-\lambda_{q_{c,jk}})\right) \\ &=& \text{cov} \left( {\sum}^{N_{c}}_{i=1}s_{i}b'_{ci}(p_{ci}-\lambda_{p_{ci}}), {\sum}^{N_{c}}_{j<k}s_{j}s_{k}d'_{c,jk}(q_{c,jk}-\lambda_{q_{c,jk}})\right) \\ &=&{\sum}^{N_{c}}_{i \neq j, i \neq k, j <k}\text{cov}[s_{i},s_{j}s_{k}] b'_{ci}(p_{ci}-\lambda_{p_{ci}})(q_{c,jk}-\lambda_{q_{c,jk}})'d_{c,jk}\\ &&+{\sum}^{N_{c}}_{i =j, j<k}\text{cov}[s_{i},s_{i}s_{k}] b'_{ci}(p_{ci}-\lambda_{p_{ci}})(q_{c,jk}-\lambda_{q_{c,jk}})'d_{c,jk}\\ &&+{\sum}^{N_{c}}_{i =k, j<k}\text{cov}[s_{i},s_{j}s_{i}] b'_{ci}(p_{ci}-\lambda_{p_{ci}})(q_{c,jk}-\lambda_{q_{c,jk}})'d_{hc,jk}\\ &=&\left[\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)} \left( \frac{n_{c}-2}{N_{c}-2}-\frac{n_{c}}{N_{c}}\right)\right] {\sum}^{N_{c}}_{i =j, j<k} b'_{ci}(p_{ci} - \lambda_{p_{ci}})(q_{c,jk} - \lambda_{q_{c,jk}})' d_{c,jk}\\ &&+\left[\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left( 1-\frac{n_{c}}{N_{c}} \right)\right] \left[{\sum}^{N_{c}}_{i =j, j<k} b'_{ci}(p_{ci}-\lambda_{p_{ci}})(q_{c,jk}-\lambda_{q_{c,jk}})' d_{c,jk}\right.\\ &&+\left. {\sum}^{N_{c}}_{i =k, j<k} b'_{ci}(p_{ci}-\lambda_{p_{ci}})(q_{c,jk}-\lambda_{q_{c,jk}})'d_{c,jk}\right] \\ &=&\left[\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)} \left( \frac{n_{c}-2}{N_{c}-2}-\frac{n_{c}}{N_{c}}\right)\right]S^{*}_{6,N_{c}}(y) \\ &&+\left[\frac{n_{c}(n_{c}-1)}{N_{c}(N_{c}-1)}\left( 1-\frac{n_{c}}{N_{c}} \right)\right]S^{*}_{7,N_{c}}(y),\text{(say)}. \end{array} $$
(c.17)

Finally, by applying (c.12), (c.16) and (c.17), the desired variance follows from Eq. c.7 as

$$ \begin{array}{@{}rcl@{}} &&\text{var}[S_{2,y}(\cdot)]\\ &=&\left[(\frac{K^{2}}{k})\frac{1}{K}{\sum}^{K}_{c=1}{N^{2}_{c}} \left\{\frac{1}{{n^{2}_{c}}}V_{c,1}(\cdot) +\frac{(N_{c}-1)^{2}}{[n_{c}(n_{c}-1)]^{2}}V_{c,2}(\cdot) \right. \right. \\ &&+\left. \left. \frac{(N_{c}-1)}{[{n^{2}_{c}}(n_{c}-1)]}V_{c,12}(\cdot) \right\}\right]. \end{array} $$
(c.18)

For simplicity, we assume that the sampling fractions are negligible. It then follows from Eqs. c.12c.16 and c.17 that

$$ \begin{array}{@{}rcl@{}} V_{c,1}(\beta,\sigma^{2}_{\gamma}) &\simeq & n_{c}\left[\frac{1}{N_{c}}S^{*}_{1,N_{c}}(y)\right]-2n_{c}\left[\frac{1}{N_{c}(N_{c}-1)}S^{*}_{2,N_{c}}(y)\right] \end{array} $$
(c.19)
$$ \begin{array}{@{}rcl@{}} V_{c,2}(\beta,\sigma^{2}_{\gamma}) &\simeq & n_{c}(n_{c}-1)\left[\frac{1}{N_{c}(N_{c}-1)}\left\{S^{*}_{3,N_{c}}(y) \right. \right. \\ &+&\left. \left.\delta_{1}(n_{c},N_{c})S^{*}_{4,N_{c}}(y) +\delta_{2}(n_{c},N_{c})S^{*}_{5,N_{c}}(y) \right\}\right] \end{array} $$
(c.20)
$$ \begin{array}{@{}rcl@{}} V_{c,12}(\beta,\sigma^{2}_{\gamma}) &\simeq & n_{c}(n_{c}-1)\left[\frac{1}{N_{c}(N_{c}-1)}S^{*}_{7,N_{c}}(y)\right], \end{array} $$
(c.21)

respectively. Consequently, we can simplify the desired variance in Eq. c.18 as

$$ \begin{array}{@{}rcl@{}} &&\text{var}[S_{2,y}(\cdot)]\\ &=&\left[(\frac{K}{k}){\sum}^{K}_{c=1}\frac{{N^{2}_{c}}}{n_{c}} \left\{\left( \frac{1}{N_{c}}S^{*}_{1,N_{c}}(y)-\frac{2} {N_{c}(N_{c}-1)}S^{*}_{2,N_{c}}(y)\right) \right. \right. \\ &&+\frac{1}{n_{c}-1} \left( S^{*}_{3,N_{c}}(y)+\delta_{1}(n_{c},N_{c})S^{*}_{4,N_{c}}(y) + \delta_{2}(n_{c},N_{c})S^{*}_{5,N_{c}}(y) \right) \\ &&+\left. \left. \frac{1}{N_{c}}S^{*}_{7,N_{c}}(y) \right\}\right]. \end{array} $$
(c.22)

Next we assume that the following regularity conditions hold with regard to the finite population:

C2

For \(N={\sum }^{K}_{c=1}N_{c},\) and for N dependent finite and bounded quantity rN, the summed quantities in Eq. c.22 satisfy

$$ \begin{array}{@{}rcl@{}} &&\max_{c}\left[\frac{K{N^{2}_{c}}}{N} \left\{\left( \frac{1}{N_{c}}S^{*}_{1,N_{c}}(y)-\frac{2} {N_{c}(N_{c}-1)}S^{*}_{2,N_{c}}(y)\right) \right. \right. \\ &+&\frac{1}{n_{c}-1} \left( S^{*}_{3,N_{c}}(y)+\delta_{1}(n_{c},N_{c})S^{*}_{4,N_{c}}(y) + \delta_{2}(n_{c},N_{c})S^{*}_{5,N_{c}}(y) \right) \\ &+&\left. \left. \frac{1}{N_{c}}S^{*}_{7,N_{c}}(y) \right\}\right] \leq r_{N}. \end{array} $$
(c.23)

It then follows that the variance in Eq. c.22 satisfies the condition

$$ \begin{array}{@{}rcl@{}} &&\text{var}[S_{2,y}(\cdot)] \leq N\left[ r_{N}{\sum}^{K}_{c=1}\frac{1}{kn_{c}}\right]. \end{array} $$
(c.24)

Finally by applying (c.24), (c.6), and (c.5), the convergence result stated in (6.1)-(6.2) under Section 6 follows from Eq. c.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutradhar, B.C. Multinomial Logistic Mixed Models for Clustered Categorical Data in a Complex Survey Sampling Setup. Sankhya A 84, 743–789 (2022). https://doi.org/10.1007/s13171-020-00215-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-020-00215-2

Keywords

AMS (2000) subject classification

Navigation