Skip to main content
Log in

Uncertainty Quantification in Robust Inference for Irregularly Spaced Spatial Data Using Block Bootstrap

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

This paper deals with uncertainty quantification (UQ) for a class of robust estimators of population parameters of a stationary, multivariate random field that is observed at a finite number of locations s1,…, sn, generated by a stochastic design. The class of robust estimators considered here is given by the so-called M-estimators that in particular include robust estimators of location, scale, linear regression parameters, as well as the maximum likelihood and pseudo maximum likelihood estimators, among others. Finding practically useful UQ measures, both in terms of standard errors of the point estimators as well as interval estimation for the parameters is a difficult problem due to presence of inhomogeneous dependence among irregularly spaced spatial observations. Exact and asymptotic variances of such estimators have a complicated form that depends on the autocovariance function of the random field, the spatial sampling density, and also on the relative rate of growth of the sample size versus the volume of the sampling region. Similar complex interactions of these factors are also present in the sampling distributions of these estimators which makes exact calibration of confidence intervals impractical. Here it is shown that a version of the spatial block bootstrap can be used to produce valid UQ measures, both in terms of estimation of the standard error as well as interval estimation. A key advantage of the proposed method is that it provides valid approximations in very general settings without requiring any explicit adjustments for spatial sampling structures and without requiring explicit estimation of the covariance function and of the spatial sampling density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharya, R.N. and Ghosh, J.K. (1978). On the validity of the formal edgeworth expansion. Ann. Statist. 6, 434–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, R.N. and Ranga Rao, R. (1986). Normal approximation and asymptotic expansions. Krieger, Malabar.

    MATH  Google Scholar 

  • Bradley, R.C. (1989). A caution on mixing conditions for random fields. Statist and Probab Letters 8, 489–491.

    Article  MathSciNet  MATH  Google Scholar 

  • Bradley, R.C. (1993). Equivalent mixing conditions for random fields. Ann. Probab. 21, 1921–1926.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N. and Hawkins, D.M. (1980). Robust estimation of the variogram. I J. Int. Assoc. Math. Geol. 12, 115–125.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. (1993). Statistics for spatial data. Wiley, New York.

    Book  MATH  Google Scholar 

  • Doukhan, P. (1994). Mixing. Lecture notes in statistics, no 85. Springer-Verlag, New York.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics 7, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, D.A. (1981). Bootstrapping regression models. Annals of Statistics 9, 1218–1228.

    Article  MathSciNet  MATH  Google Scholar 

  • Garcia-Soidan, P.H. and Hall, P. (1997). On sample reuse methods for spatial data. Biometrics 53, 273–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Guyon, X. (1987). Estimation d’un champ par pseudo-vraisemblance conditionelle: Etude asymptotique et application au cas Markovien. Publications des Facultes Universitaires Saint-Louis, Brussels, Droesbeke, F. (ed.), p. 15–62.

  • Guyon, X. (1995). Random fields on a network. Modeling, statistics and applications. Springer-Verlag Inc New York, NY.

    MATH  Google Scholar 

  • Hall, P. (1985). Resampling a coverage pattern. Stoch. Process. Appl. 20, 231–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. and Heyde, C. (1980). Martingale limit theory and its applications. Academic Press, New York.

    MATH  Google Scholar 

  • Hall, P. and Patil, P. (1994). Properties of nonparametric estimators of autocovariance for stationary random fields. Probab. Theory Relat. Fields 99, 399–424.

    Article  MathSciNet  MATH  Google Scholar 

  • Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986). Robust statistics: The approach based on influence functions. New York, Wiley.

    MATH  Google Scholar 

  • Huber, P.J. (1980). Robust statistics. Wiley, New York.

    Google Scholar 

  • Künsch, H.R. (1989). The jackknife and the bootstrap for general stationary observations. Annals of Statistics 17, 1217–1261.

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri, S.N. (1992). Bootstrapping M-estimators of a multiple linear regression parameter. Annals of Statistics 20, 1548–1570.

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri, S.N. (1993). On the moving block bootstrap under long range dependence. Statistics and Probability Letters 18, 405–413.

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri, S.N. (1996). On Edgeworth expansion and moving block bootstrap for Studentized M-estimators in multiple linear regression models. J. Multivar. Anal. 56, 42–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri, S.N. (1999). Asymptotic distribution of the empirical spatial cumulative distribution function predictor and prediction bands based on a subsampling method. Probab. Theory Relat. Fields 114, 55–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri, S.N., Kaiser, M.S., Cressie, N. and Hsu, N.-J. (1999). Prediction of spatial cumulative distribution functions using subsampling (with discussion). J. Am. Stat. Assoc. 94, 86–110.

    Article  MATH  Google Scholar 

  • Lahiri, S., Lee, Y. and Cressie, N. (2002). Efficiency of least squares estimators of spatial variogram parameters. Journal of Statistical Planning and Inference 103, 65–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri, S.N. (2003a). Central limit theorems for weighted sums of a spatial process under a class of stochastic and fixed designs. Sankhya Ser A 65, 356–388.

    MathSciNet  MATH  Google Scholar 

  • Lahiri, S.N. (2003b). Resampling methods for dependent data. Springer, New York.

    Book  MATH  Google Scholar 

  • Lahiri, S.N. and Mukherjee, K. (2004). Asymptotic distributions of M-estimators in a spatial regression model under some fixed and stochastic spatial sampling designs. Ann. Inst. Stat. Math. 56, 225–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri, S.N. and Zhu, J. (2006). Resampling methods for spatial regression models under a class of stochastic designs. Annals of Statistics 34, 1774–1813.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, R.Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. Wiley, New York, Lepage, R. and Billard, L. (eds.), p. 225–248.

  • Mahalanobis, P.C. (1946). Report on the Bihar crop survey: Rabi season 1943-1944. Sankhya, Series A 7, 269–280.

    Google Scholar 

  • Mardia, K.V. and Marshall, R.J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71, 135–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J.W. (1965). Topology from the differentiable view point univ. Press of Virginia, Charlottesville.

    Google Scholar 

  • Nordman, D. and Lahiri, S.N. (2004). On optimal spatial subsample size for variance estimation. Annals of Statistics 32, 1981–2027.

    Article  MathSciNet  MATH  Google Scholar 

  • Nordman, D., Lahiri, S.N. and Fridley, B.L. (2007). On the optimal block size for a spatial block bootstrap method. Sankhya 69, 468–493.

    MathSciNet  MATH  Google Scholar 

  • Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. Annals of Statistics 22, 2031–2050.

    Article  MathSciNet  MATH  Google Scholar 

  • Politis, D.N., Paparoditis, E. and Romano, J.P. (1998). Large sample inference for irregularly spaced dependent observations based on subsampling Sankhyā. Series A 60, 274–292.

    MathSciNet  MATH  Google Scholar 

  • Politis, D.N., Paparoditis, E. and Romano, J.P. (1999). Resampling marked point processes in multivariate analysis, design of experiments, and survey sampling: a Tribute to J.N. Srivastava. Mercel Dekker, New York, Ghosh, S. (ed.), p. 163–185.

  • Possolo, A. (1991). Subsampling a random field. Institute of Mathematical Statistics, Hayward, p. 286–294.

  • Prakasa Rao, B.L.S. (1983). Nonparametric functional estimation. Academic press, New York.

    MATH  Google Scholar 

  • Sengupta, S., Shao, X. and Wang, Y. (2015). The dependent random weighting. J. Time Ser. Anal. 36, 315–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherman, M. and Carlstein, E. (1994). Nonparametric Estimation of the moments of a general statistic computed from spatial data. J. Am. Stat. Assoc. 89, 496–500.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherman, M. (1996). Variance Estimation for statistics computed from spatial lattice data. Journal of the Royal Statistical Society Series B 58, 509–523.

    MathSciNet  MATH  Google Scholar 

  • Shorack, G.R. (1982). Bootstrapping robust regression. Communications in Statistics. Part A – Theory and Methods 11, 961–972.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks three anonynous referees, the Associate Editor and the Editors for their constructive comments that improved an earlier draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Lahiri.

Additional information

Research partially supported by NSF grants no. DMS-1613192 & DMS 1811998.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, S.N. Uncertainty Quantification in Robust Inference for Irregularly Spaced Spatial Data Using Block Bootstrap. Sankhya A 80 (Suppl 1), 173–221 (2018). https://doi.org/10.1007/s13171-018-0154-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-018-0154-6

Keywords and phrases

AMS (2000) subject classification

Navigation