Skip to main content
Log in

Estimating High Quantiles Based on Dependent Circular Data

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This paper gives an overview of the existing approaches for modelling high quantiles of dependent spatial data and apply the methods to the bivariate circular case. We also adapt the bootstrap to the situation at hand.

Since any data set one might use is finite, the interest lies in estimating a continuous curve as its upper limit (or quantile function). This can be obtained by either a kernel type regression or a fitted parametric model. We also introduce a new, more realistic correction formula for a nonparametric method for estimating the pointwise maximum (called frontier in this setup [8]).

An additional common challenge in real-life applications is the dependence among subsequent observations. The theoretical results about the GPD limit of the exceedances beyond high threshold remain valid under mixing-type conditions, called D(un) in the extreme-value literature. However, if one intends to use the bootstrap-based reliability estimators, then they need to be adjusted — e.g., by the block-bootstrap approach in [15]. We estimate the reliability of the estimators by a suitable application of the m out of n bootstrap, which turned out to be suitable for high-quantile estimation.

We illustrate the introduced methods for simulated as well as real enzymes data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Balkema and L. de Haan, “Residual lifetime at great age,” Ann. Probab., 2, 792–804 (1974).

    Article  MATH  Google Scholar 

  2. P. J. Bickel and A. Sakov, “On the choice of m in the m out of n bootstrap and confidence bounds for extrema,” Stat. Sinica, 18, 967–985 (2008).

    MathSciNet  MATH  Google Scholar 

  3. Z. Cai, “Regression quantiles for time series,” Econ. Theor., 18, 169–192 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Chavez-Demoulin and A. C. Davison, “Generalized additive modelling of sample extremes,” Appl. Stat., 54, 207–222 (2005).

    MathSciNet  MATH  Google Scholar 

  5. I.L. Dryden and K.V. Mardia, Statistical Shape Analysis: With Applications in R, Wiley, New York (2016).

    Book  MATH  Google Scholar 

  6. I. L. Dryden and A. Zempléni, “Extreme shape analysis,” J. R. Stat. Soc. Ser. C, 55, No. 1, 103–121 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Efron, “Bootstrap methods: another look at the jackknife,” Ann. Stat., 7, 1–26 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Girarda and P. Jacob, “Frontier estimation via kernel regression on high power-transformed data,” J. Multivariate Anal., 99, 403–420 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Hall, The Bootstrap and Edgeworth Expansion, Springer, New York (1992).

    Book  MATH  Google Scholar 

  10. S.N. Lahiri, Resampling Methods for Dependent Data, Springer, New York (2003).

    Book  MATH  Google Scholar 

  11. M.R. Leadbetter, “Extremes and local dependence of stationary sequences,”Z. Wahrscheinlichkeitstheorie verw. Gebiete, 65, 291–306 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  12. Q. Li, and J.S. Racine, “Nonparametric estimation of conditional CDF and quantile functions with mixed categorical and continuous data,” J. Bus. Econ. Stat., 26, 423–434 (2008).

    Article  MathSciNet  Google Scholar 

  13. Q. Li, J. Lin, and J.S. Racine, “Optimal bandwidth selection for nonparametric conditional distribution and quantile functions,” J. Bus. Econ. Stat., 31, 57–65 (2013).

    Article  MathSciNet  Google Scholar 

  14. E.A. Nadaraya, “On Estimating Regression,” Theor. Probab. Appl., 9, No. 1, 141–142 (1964).

    Article  MATH  Google Scholar 

  15. D.N. Politis and H. White, “Automatic block-length selection for the dependent bootstrap,” Economet. Rev., 23, 53–70 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Varga and A. Zempléni, “Generalised block bootstrap and its use in meteorology,” Adv. Stat. Clim. Meteorol. Oceanogr., 3, 1–12 (2017).

  17. X. Wang, C. van Eeden, and J. V. Zidek, “Asymptotic properties of maximum weighted likelihood estimators,” J. Stat. Plan. Infer., 119, 37–54 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  18. G.S. Watson, “Smooth regression analysis,” Sankhy Ind. J. Stat., 26, No. 4, 359–372 (1964).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zempléni.

Additional information

Proceedings of the XXXIV International Seminar on Stability Problems for Stochastic Models, Debrecen, Hungary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zempléni, A. Estimating High Quantiles Based on Dependent Circular Data. J Math Sci 237, 865–874 (2019). https://doi.org/10.1007/s10958-019-04213-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04213-0

Navigation