Skip to main content

Advertisement

Log in

Clinically relevant stratification of lung squamous carcinoma patients based on ubiquitinated proteasome genes for 3P medical approach

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Relevance

The proteasome is a crucial mechanism that regulates protein fate and eliminates misfolded proteins, playing a significant role in cellular processes. In the context of lung cancer, the proteasome’s regulatory function is closely associated with the disease’s pathophysiology, revealing multiple connections within the cell. Therefore, studying proteasome inhibitors as a means to identify potential pathways in carcinogenesis and metastatic progression is crucial in in-depth insight into its molecular mechanism and discovery of new therapeutic target to improve its therapy, and establishing effective biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment for lung squamous carcinoma in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine).

Methods

This study identified differentially expressed proteasome genes (DEPGs) in lung squamous carcinoma (LUSC) and developed a gene signature validated through Kaplan–Meier analysis and ROC curves. The study used WGCNA analysis to identify proteasome co-expression gene modules and their interactions with the immune system. NMF analysis delineated distinct LUSC subtypes based on proteasome gene expression patterns, while ssGSEA analysis quantified immune gene-set abundance and classified immune subtypes within LUSC samples. Furthermore, the study examined correlations between clinicopathological attributes, immune checkpoints, immune scores, immune cell composition, and mutation status across different risk score groups, NMF clusters, and immunity clusters.

Results

This study utilized DEPGs to develop an eleven-proteasome gene-signature prognostic model for LUSC, which divided samples into high-risk and low-risk groups with significant overall survival differences. NMF analysis identified six distinct LUSC clusters associated with overall survival. Additionally, ssGSEA analysis classified LUSC samples into four immune subtypes based on the abundance of immune cell infiltration with clinical relevance. A total of 145 DEGs were identified between high-risk and low-risk score groups, which had significant biological effects. Moreover, PSMD11 was found to promote LUSC progression by depending on the ubiquitin–proteasome system for degradation.

Conclusions

Ubiquitinated proteasome genes were effective in developing a prognostic model for LUSC patients. The study emphasized the critical role of proteasomes in LUSC processes, such as drug sensitivity, immune microenvironment, and mutation status. These data will contribute to the clinically relevant stratification of LUSC patients for personalized 3P medical approach. Further, we also recommend the application of the ubiquitinated proteasome system in multi-level diagnostics including multi-omics, liquid biopsy, prediction and targeted prevention of chronic inflammation and metastatic disease, and mitochondrial health-related biomarkers, for LUSC 3PM practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the data used in this study were collected in this article and supplemental materials.

Code availability

All protein and gene accession codes can be available in the Swiss-Prot and Genbank databases.

Abbreviations

ADRM1:

ADRM1 26S proteasome ubiquitin receptor

AIC:

Akaike Information Criterion

AUC:

Area under the curve

BP:

Biological process

CAR-T:

Chimeric antigen receptor T cell

CC:

Cellular component

CD274:

Programmed cell death 1 ligand 1

CD276:

CD276 antigen

CD80:

T-lymphocyte activation antigen CD80

CD86:

T-lymphocyte activation antigen CD86

CHST7:

Carbohydrate sulfotransferase 7

CMTM6:

CKLF-like MARVEL transmembrane domain-containing protein 6

CSN5:

COP9 signalosome complex subunit 5

CTLA4:

Cytotoxic T-lymphocyte protein 4

DEGs:

Differentially expressed genes

DTP:

Developmental Therapeutics Program

GAP43:

Gap junction alpha-1 protein

GO:

Gene ontology

GSEA:

Gene Set Enrichment Analysis

IL:

Interleukin

ITGA8:

Integrin alpha-8

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LUSC:

Lung squamous carcinomas

MAD:

Median absolute deviation

MF:

Molecular function

MHC:

Major Histocompatibility Complex

NCBP1:

Nuclear cap-binding protein subunit 1

NCI:

National Cancer Institute

NMF:

Nonnegative matrix factorization method

OPA1:

Dynamin-like 120 kDa protein

PD-1:

Programmed cell death protein 1

PDCD1:

Programmed cell death protein 1

PDCD1LG2:

Programmed cell death 1 ligand 2

PD-L1:

Programmed cell death 1 ligand 1

PPI:

Protein-protein interaction

PSMA1:

Proteasome subunit alpha type-1

PSMA2:

Proteasome subunit alpha type-2

PSMA3:

Proteasome subunit alpha type-3

PSMA4:

Proteasome subunit alpha type-4

PSMA5:

Proteasome subunit alpha type-5

PSMA6:

Proteasome subunit alpha type-6

PSMA7:

Proteasome subunit alpha type-7

PSMB1:

Proteasome subunit beta type-1

PSMB10:

Proteasome subunit beta type-10

PSMB11:

Proteasome subunit beta type-11

PSMB2:

Proteasome subunit beta type-2

PSMB3:

Proteasome subunit beta type-3

PSMB4:

Proteasome subunit beta type-4

PSMB5:

Proteasome subunit beta type-5

PSMB6:

Proteasome subunit beta type-6

PSMB7:

Proteasome subunit beta type-7

PSMB8:

Proteasome subunit beta type-8

PSMB9:

Proteasome subunit beta type-9

PSMC1:

26S proteasome regulatory subunit 4

PSMC2:

26S proteasome regulatory subunit 7

PSMC3:

26S proteasome regulatory subunit 6A

PSMC4:

26S proteasome regulatory subunit 6B

PSMC5:

26S proteasome regulatory subunit 8

PSMC6:

26S proteasome regulatory subunit 10B

PSMD1:

26S proteasome non-ATPase regulatory subunit 1

PSMD11:

26S proteasome non-ATPase regulatory subunit 11

PSMD12:

26S proteasome non-ATPase regulatory subunit 12

PSMD13:

26S proteasome non-ATPase regulatory subunit 13

PSMD14:

26S proteasome non-ATPase regulatory subunit 14

PSMD2:

26S proteasome non-ATPase regulatory subunit 2

PSMD3:

26S proteasome non-ATPase regulatory subunit 3

PSMD4:

26S proteasome non-ATPase regulatory subunit 4

PSMD6:

26S proteasome non-ATPase regulatory subunit 6

PSMD7:

26S proteasome non-ATPase regulatory subunit 7

PSMD8:

26S proteasome non-ATPase regulatory subunit 8

PSMD9:

26S proteasome non-ATPase regulatory subunit 9

PSME1:

Proteasome activator complex subunit 1

PSME2:

Proteasome activator complex subunit 2

PSME3:

Proteasome activator complex subunit 3

PSME4:

Proteasome activator complex subunit 4

ROC:

Receiver operating characteristic

Rpn10:

26S proteasome non-ATPase regulatory subunit 4

Rpn13:

26S proteasome regulatory subunit RPN13

SEM1:

26S proteasome complex subunit SEM1

ssGSEA:

Single-sample Gene Set Enrichment Analysis

TCA:

Tricarboxylic acid

TCGA:

The Cancer Genome Atlas

TMB:

Tumor mutation burden

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

UPS:

Ubiquitin-proteasome system

VTCN1:

V-set domain-containing T cell activation inhibitor 1

WGCNA:

Weighted gene co-expression network analysis

References

  1. Socinski MA, Obasaju C, Gandara D, Hirsch FR, Bonomi P, Bunn PA, et al. Current and emergent therapy options for advanced squamous cell lung cancer. J Thorac Oncol. 2018;13(2):165–83. https://doi.org/10.1016/j.jtho.2017.11.111.

    Article  CAS  PubMed  Google Scholar 

  2. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25. https://doi.org/10.1038/nature11404.

    Article  CAS  Google Scholar 

  3. Felip E, Altorki N, Zhou C, Csőszi T, Vynnychenko I, Goloborodko O, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet (London, England). 2021;398(10308):1344–57. https://doi.org/10.1016/S0140-6736(21)02098-5.

    Article  CAS  PubMed  Google Scholar 

  4. Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018;19(11):697–712. https://doi.org/10.1038/s41580-018-0040-z.

    Article  CAS  PubMed  Google Scholar 

  5. Wang S, Wang T, Yang Q, Cheng S, Liu F, Yang G, et al. Proteasomal deubiquitylase activity enhances cell surface recycling of the epidermal growth factor receptor in non-small cell lung cancer. Cell Oncol (Dordr). 2022;45(5):951–65. https://doi.org/10.1007/s13402-022-00699-0.

    Article  CAS  PubMed  Google Scholar 

  6. Tong L, Shen S, Huang Q, Fu J, Wang T, Pan L, et al. Proteasome-dependent degradation of Smad7 is critical for lung cancer metastasis. Cell Death Differ. 2020;27(6):1795–806. https://doi.org/10.1038/s41418-019-0459-6.

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Guan D, Dong M, Yang J, Wei H, Liang Q, et al. UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nat Cell Biol. 2020;22(9):1056–63. https://doi.org/10.1038/s41556-020-0559-z.

    Article  CAS  PubMed  Google Scholar 

  8. Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169(5):792–806. https://doi.org/10.1016/j.cell.2017.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem. 2010;147(6):793–8. https://doi.org/10.1093/jb/mvq044.

    Article  CAS  PubMed  Google Scholar 

  10. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5(1):11. https://doi.org/10.1038/s41392-020-0107-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu M, Chen W, Zhuang W, Zhan X. Label-free quantitative identification of abnormally ubiquitinated proteins as useful biomarkers for human lung squamous cell carcinomas. EPMA J. 2020;11(1):73–94. https://doi.org/10.1007/s13167-019-00197-8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhat SA, Vasi Z, Adhikari R, Gudur A, Ali A, Jiang L, et al. Ubiquitin proteasome system in immune regulation and therapeutics. Curr Opin Pharmacol. 2022;67:102310. https://doi.org/10.1016/j.coph.2022.102310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The ubiquitin-proteasome system in immune cells. Biomolecules. 2021;11(1). https://doi.org/10.3390/biom11010060.

  14. Kammerl IE, Meiners S. Proteasome function shapes innate and adaptive immune responses. Am J Physiol Lung Cell Mol Physiol. 2016;311(2):L328–36. https://doi.org/10.1152/ajplung.00156.2016.

    Article  PubMed  Google Scholar 

  15. Wang P, Chen Y, Wang C. Beyond tumor mutation burden: tumor neoantigen burden as a biomarker for immunotherapy and other types of therapy. Front Oncol. 2021;11:672677. https://doi.org/10.3389/fonc.2021.672677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xuan DTM, Wu C-C, Kao T-J, Ta HDK, Anuraga G, Andriani V, et al. Prognostic and immune infiltration signatures of proteasome 26S subunit, non-ATPase (PSMD) family genes in breast cancer patients. Aging. 2021;13(22):24882–913. https://doi.org/10.18632/aging.203722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu J, Brosseau J-P, Shi H. Targeted degradation of immune checkpoint proteins: emerging strategies for cancer immunotherapy. Oncogene. 2020;39(48):7106–13. https://doi.org/10.1038/s41388-020-01491-w.

    Article  PubMed  Google Scholar 

  18. Zengin T, Önal-Süzek T. Comprehensive profiling of genomic and transcriptomic differences between risk groups of lung adenocarcinoma and lung squamous cell carcinoma. J Personalized Med. 2021;11(2). https://doi.org/10.3390/jpm11020154.

  19. Liu Z, Wang W, Zhou Y, Li L, Zhou W. PSMA1, a poor prognostic factor, promotes tumor growth in lung squamous cell carcinoma. Dis Markers. 2023;2023:5386635. https://doi.org/10.1155/2023/5386635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhan X, Lu M, Yang L, Yang J, Zhan X, Zheng S, Guo Y, Li B, Wen S, Li J, Li N. Ubiquitination-mediated molecular pathway alterations in human lung squamous cell carcinomas identified by quantitative ubiquitinomics. Front Endocrinol (Lausanne). 2022;13:970843. https://doi.org/10.3389/fendo.2022.970843.

    Article  PubMed  Google Scholar 

  21. Amit S, Ben-Neriah Y. NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach. Semin Cancer Biol. 2003;13(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  22. Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, et al. B7–H3 and B7–H4 expression in non-small-cell lung cancer. Lung Cancer. 2006;53(2):143–51.

    Article  PubMed  Google Scholar 

  23. Song X, Zhou Z, Li H, Xue Y, Lu X, Bahar I, et al. Pharmacologic suppression of B7–H4 glycosylation restores antitumor immunity in immune-cold breast cancers. Cancer Discov. 2020;10(12):1872–93. https://doi.org/10.1158/2159-8290.CD-20-0402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baravalle G, Park H, McSweeney M, Ohmura-Hoshino M, Matsuki Y, Ishido S, et al. Ubiquitination of CD86 is a key mechanism in regulating antigen presentation by dendritic cells. J Immunol. 2011;187(6):2966–73. https://doi.org/10.4049/jimmunol.1101643.

    Article  CAS  PubMed  Google Scholar 

  25. Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol. 2017;47(5):765–79. https://doi.org/10.1002/eji.201646875.

    Article  CAS  PubMed  Google Scholar 

  26. Corcoran K, Jabbour M, Bhagwandin C, Deymier MJ, Theisen DL, Lybarger L. Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1). J Biol Chem. 2011;286(43):37168–80. https://doi.org/10.1074/jbc.M110.204040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 2017;549(7670):106–10. https://doi.org/10.1038/nature23669.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burr ML, Sparbier CE, Chan Y-C, Williamson JC, Woods K, Beavis PA, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549(7670):101–5. https://doi.org/10.1038/nature23643.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim S-O, Li C-W, Xia W, Cha J-H, Chan L-C, Wu Y, et al. Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30(6):925–39. https://doi.org/10.1016/j.ccell.2016.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding L, Chen X, Zhang W, Dai X, Guo H, Pan X, et al. Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling. J Clin Investigation. 2023;133(1). https://doi.org/10.1172/JCI154754.

  31. Debeljak Ž, Dundović S, Badovinac S, Mandić S, Samaržija M, Dmitrović B, et al. Serum carbohydrate sulfotransferase 7 in lung cancer and non-malignant pulmonary inflammations. Clin Chem Lab Med. 2018;56(8):1328–35. https://doi.org/10.1515/cclm-2017-1157.

    Article  CAS  PubMed  Google Scholar 

  32. Hung C-C, Lin C-H, Chang H, Wang C-Y, Lin S-H, Hsu P-C, et al. Astrocytic GAP43 induced by the TLR4/NF-κB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J Neurosci. 2016;36(6):2027–43. https://doi.org/10.1523/JNEUROSCI.3457-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang F, Ying L, Jin J, Feng J, Chen K, Huang M, et al. GAP43, a novel metastasis promoter in non-small cell lung cancer. J Transl Med. 2018;16(1):310. https://doi.org/10.1186/s12967-018-1682-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gebhardt A, Habjan M, Benda C, Meiler A, Haas DA, Hein MY, et al. mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nat Commun. 2015;6:8192. https://doi.org/10.1038/ncomms9192.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Zhang H, Wang A, Tan Y, Wang S, Ma Q, Chen X, et al. NCBP1 promotes the development of lung adenocarcinoma through up-regulation of CUL4B. J Cell Mol Med. 2019;23(10):6965–77. https://doi.org/10.1111/jcmm.14581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Zhu G, Li Y, Huang H, Chen C, Wu D, et al. LINC01798/miR-17-5p axis regulates ITGA8 and causes changes in tumor microenvironment and stemness in lung adenocarcinoma. Front Immunol. 2023;14:1096818. https://doi.org/10.3389/fimmu.2023.1096818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Li Y, Jiang X, Gu Y, Zheng H, Wang X, et al. OPA1 supports mitochondrial dynamics and immune evasion to CD8+ T cell in lung adenocarcinoma. Peer J. 2022;10:e14543. https://doi.org/10.7717/peerj.14543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abaza Y, Kantarjian HM, Faderl S, Jabbour E, Jain N, Thomas D, et al. (2018) Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am J Hematol. 2018;93(1):91–9. https://doi.org/10.1002/ajh.24947.

    Article  CAS  PubMed  Google Scholar 

  39. Oo ZY, Proctor M, Stevenson AJ, Nazareth D, Fernando M, Daignault SM, et al. Combined use of subclinical hydroxyurea and CHK1 inhibitor effectively controls melanoma and lung cancer progression, with reduced normal tissue toxicity compared to gemcitabine. Mol Oncol. 2019;13(7):1503–18. https://doi.org/10.1002/1878-0261.12497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tacconi EM, Badie S, De Gregoriis G, Reisländer T, Lai X, Porru M, et al. Chlorambucil targets BRCA1/2-deficient tumours and counteracts PARP inhibitor resistance. EMBO Mol Med. 2019;11(7):e9982. https://doi.org/10.15252/emmm.201809982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heng WS, Cheah S-C. Chelerythrine chloride downregulates β-catenin and inhibits stem cell properties of non-small cell lung carcinoma. Molecules. 2020; 25(1). https://doi.org/10.3390/molecules25010224.

  42. Chaikovsky AC, Li C, Jeng EE, Loebell S, Lee MC, Murray CW, et al. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature. 2021;592(7856):794–8. https://doi.org/10.1038/s41586-021-03474-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y-C, Zhao C-J, Jin Z-F, Zheng J, Ma L-T. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol. 2023;13:1120828. https://doi.org/10.3389/fonc.2023.1120828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun Q, Zhang J, Li X, Yang G, Cheng S, Guo D, et al. The ubiquitin-specific protease 8 antagonizes melatonin-induced endocytic degradation of MT1 receptor to promote lung adenocarcinoma growth. J Adv Res. 2022; 41. https://doi.org/10.1016/j.jare.2022.01.015.

  45. Zhan Z, Xie X, Cao H, Zhou X, Zhang XD, Fan H, et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 2014;10(2):257–68. https://doi.org/10.4161/auto.27162.

    Article  CAS  PubMed  Google Scholar 

  46. Kikuchi N, Soga T, Nomura M, Sato T, Sakamoto Y, Tanaka R, et al. Comparison of the ischemic and non-ischemic lung cancer metabolome reveals hyper activity of the TCA cycle and autophagy. Biochem Biophys Res Commun. 2020;530(1):285–91. https://doi.org/10.1016/j.bbrc.2020.07.082.

    Article  CAS  PubMed  Google Scholar 

  47. Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med. 2020;52(1):15–30. https://doi.org/10.1038/s12276-020-0375-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu Y, Pan J, Lin Y, Wu Y, Chen Y, Li H. Ceramide synthase 1 inhibits brain metastasis of non-small cell lung cancer by interacting with USP14 and downregulating the PI3K/AKT/mTOR signaling pathway. Cancers. 2023;15(7). https://doi.org/10.3390/cancers15071994.

  49. Blijlevens M, Komor MA, Sciarrillo R, Smit EF, Fijneman RJA, van Beusechem VW. Silencing core spliceosome SM gene expression induces a cytotoxic splicing switch in the proteasome subunit beta 3 mRNA in non-small cell lung cancer cells. Int J Mol Sci. 2020;21(12). https://doi.org/10.3390/ijms21124192.

  50. Rouette A, Trofimov A, Haberl D, Boucher G, Lavallée V-P, D’Angelo G, et al. Expression of immunoproteasome genes is regulated by cell-intrinsic and -extrinsic factors in human cancers. Sci Rep. 2016;6:34019. https://doi.org/10.1038/srep34019.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu Z, Song Q, Yang J, Zhao X, Zhang X, Yang P, et al. Comparative proteomic analysis of anti-cancer mechanism by periplocin treatment in lung cancer cells. Cell Physiol Biochem. 2014;33(3):859–68. https://doi.org/10.1159/000358658.

    Article  CAS  PubMed  Google Scholar 

  52. Yim J-H, Yun HS, Lee S-J, Baek J-H, Lee C-W, Song J-Y, et al. Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells. Biochem Biophys Res Commun. 2016; 469(1). https://doi.org/10.1016/j.bbrc.2015.11.077.

  53. Tanimoto A, Matsumoto S, Takeuchi S, Arai S, Fukuda K, Nishiyama A, et al. Proteasome inhibition overcomes ALK-TKI resistance in ALK-rearranged/TP53-mutant NSCLC via noxa expression. Clin Cancer Res. 2021;27(5):1410–20. https://doi.org/10.1158/1078-0432.CCR-20-2853.

    Article  CAS  PubMed  Google Scholar 

  54. Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, et al. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J. 2020;11(4):603–27. https://doi.org/10.1007/s13167-020-00226-x.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hu X, Huang W, Sun Z, Ye H, Man K, Wang Q, et al. Predictive factors, preventive implications, and personalized surgical strategies for bone metastasis from lung cancer: population-based approach with a comprehensive cancer center-based study. EPMA J. 2022;13(1):57–75. https://doi.org/10.1007/s13167-022-00270-9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10(4):365–81. https://doi.org/10.1007/s13167-019-00194-x.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J. 2022;13(4):649–69. https://doi.org/10.1007/s13167-022-00300-6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, et al. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13(2):177–93. https://doi.org/10.1007/s13167-022-00281-6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Golubnitschaja O. What is the routine mitochondrial health check-up good for? A holistic approach in the framework of 3P medicine. In book: Predictive, preventive, and personalised medicine: from bench to bedside. Springer 2023. https://doi.org/10.1007/978-3-031-34884-6_3.

  60. Sharma R, Rakshit B. Global burden of cancers attributable to tobacco smoking, 1990–2019: an ecological study. EPMA J. 2023;14(1):167–82. https://doi.org/10.1007/s13167-022-00308-y.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge The Cancer Genome Atlas (TCGA) project organizers as well as all study participants to provide the publicly available TCGA RNA-seq data and clinical data.

Funding

This work was supported by the Shandong Provincial Taishan Scholar Engineering Project Special Funds (NO.tstp20221143 to X.Z.), the Shandong Provincial Natural Science Foundation (ZR2021MH156 to X.Z.; ZR2022QH112 to N.L.), the Shandong First Medical University Talent Introduction Funds (to X.Z.), and China National Nature Scientific Funds (82203592 to N.L.).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. analyzed the data and wrote the manuscript. S.Y.O. edited and critically revised the manuscript. J.W., Z.L., X.F. and Z.Y. participated in partial data analysis. S.Z. carried out partial experiments. X.Z. and N.L. conceived the concept, designed the manuscript, coordinated and critically revised the manuscript, and was responsible for its financial support and the corresponding works. All authors approved the final manuscript.

Corresponding authors

Correspondence to Na Li or Xianquan Zhan.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 5907 KB)

Supplementary file2 (ZIP 4134 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ouedraogo, S.Y., Wang, J. et al. Clinically relevant stratification of lung squamous carcinoma patients based on ubiquitinated proteasome genes for 3P medical approach. EPMA Journal 15, 67–97 (2024). https://doi.org/10.1007/s13167-024-00352-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-024-00352-w

Keywords

Navigation