Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 2017;284:183–95. https://doi.org/10.1111/febs.13820.
CAS
Article
PubMed
Google Scholar
Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145–59. https://doi.org/10.1016/j.cell.2012.02.035.
CAS
Article
PubMed
PubMed Central
Google Scholar
Alena L, Marek S, Lenka K, Erik K, Peter K, Olga G. Mitochondriopathies as a clue to systemic disorders: “vicious circle” Of mitochondrial injury, analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P). Medicine. 2021.
Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol basis Dis. 1866;2020:165845. https://doi.org/10.1016/j.bbadis.2020.165845.
CAS
Article
Google Scholar
Kuznetsov AV, Margreiter R. Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci. 2009;10:1911–29. https://doi.org/10.3390/ijms10041911.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6:513–9. https://doi.org/10.1038/74994.
CAS
Article
PubMed
Google Scholar
Kuznetsov AV, Janakiraman M, Margreiter R, Troppmair J. Regulating cell survival by controlling cellular energy production: novel functions for ancient signaling pathways? FEBS Lett. 2004;577:1–4. https://doi.org/10.1016/j.febslet.2004.10.021.
CAS
Article
PubMed
Google Scholar
McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60. https://doi.org/10.1016/j.cub.2006.06.054.
CAS
Article
PubMed
Google Scholar
Jang JY, Blum A, Liu J, Finkel T. The role of mitochondria in aging. J Clin Invest. 2018;128:3662–70. https://doi.org/10.1172/JCI120842.
Article
PubMed
PubMed Central
Google Scholar
Sato M, Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C elegans embryos. Science. 2011;334:1141–4. https://doi.org/10.1126/science.1210333.
CAS
Article
PubMed
Google Scholar
Stockburger C, Eckert S, Eckert GP, Friedland K, Müller WE. Mitochondrial function, dynamics, and permeability transition: a complex love triangle as a possible target for the treatment of brain aging and Alzheimer’s disease. J Alzheimers Dis. 2018;64:S455–67. https://doi.org/10.3233/JAD-179915.
CAS
Article
PubMed
Google Scholar
Taghizadeh G, Pourahmad J, Mehdizadeh H, Foroumadi A, Torkaman-Boutorabi A, Hassani S, et al. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment. Free Radic Biol Med. 2016;99:11–9. https://doi.org/10.1016/j.freeradbiomed.2016.07.018.
CAS
Article
PubMed
Google Scholar
Chou C-H, Fu T-C, Tsai H-H, Hsu C-C, Wang C-H, Wang J-S. High-intensity interval training enhances mitochondrial bioenergetics of platelets in patients with heart failure. Int J Cardiol. 2019;274:214–20. https://doi.org/10.1016/j.ijcard.2018.07.104.
Article
PubMed
Google Scholar
Hambrecht R, Niebauer J, Fiehn E, Kälberer B, Offner B, Hauer K, et al. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol. 1995;25:1239–49. https://doi.org/10.1016/0735-1097(94)00568-B.
CAS
Article
PubMed
Google Scholar
van der Zwaard S, de Ruiter CJ, Noordhof DA, Sterrenburg R, Bloemers FW, de Koning JJ, et al. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists. J Appl Physiol (1985). 2016(121):636–45. https://doi.org/10.1152/japplphysiol.00355.2016.
Belardinelli R, Georgiou D, Scocco V, Barstow TJ, Purcaro A. Low intensity exercise training in patients with chronic heart failure. J Am Coll Cardiol. 1995;26:975–82. https://doi.org/10.1016/0735-1097(95)00267-1.
CAS
Article
PubMed
Google Scholar
Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol. 1997;29:1067–73. https://doi.org/10.1016/s0735-1097(97)00015-6.
CAS
Article
PubMed
Google Scholar
Williams AD, Carey MF, Selig S, Hayes A, Krum H, Patterson J, et al. Circuit resistance training in chronic heart failure improves skeletal muscle mitochondrial ATP production rate--a randomized controlled trial. J Card Fail. 2007;13:79–85. https://doi.org/10.1016/j.cardfail.2006.10.017.
CAS
Article
PubMed
Google Scholar
Kucera R, Pecen L, Topolcan O, Dahal AR, Costigliola V, Giordano FA, et al. Prostate cancer management: long-term beliefs, epidemic developments in the early twenty-first century and 3PM dimensional solutions. EPMA J. 2020;11:399–418. https://doi.org/10.1007/s13167-020-00214-1.
Article
PubMed
PubMed Central
Google Scholar
Naoi M, Wu Y, Shamoto-Nagai M, Maruyama W. Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20102451.
Liskova A, Stefanicka P, Samec M, Smejkal K, Zubor P, Bielik T, et al. Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin Exp Med. 2020;20:173–90. https://doi.org/10.1007/s10238-020-00611-w.
CAS
Article
PubMed
Google Scholar
Kubatka P, Kello M, Kajo K, Samec M, Liskova A, Jasek K, et al. Rhus Coriaria L. (Sumac) demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int J Mol Sci. 2020;22:22. https://doi.org/10.3390/ijms22010183.
CAS
Article
Google Scholar
Kubatka U, Kello K, Samec J, et al. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. IJMS. 2019;20:1749. https://doi.org/10.3390/ijms20071749.
CAS
Article
Google Scholar
Kubatka P, Kello M, Kajo K, Samec M, Jasek K, Vybohova D, et al. Chemopreventive and therapeutic efficacy of Cinnamomum zeylanicum L. Bark in experimental breast carcinoma: mechanistic in vivo and in vitro analyses. Molecules. 2020;25:1399. https://doi.org/10.3390/molecules25061399.
CAS
Article
PubMed Central
Google Scholar
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: a review. Phytother Res. 2020;34:1745–60. https://doi.org/10.1002/ptr.6642.
CAS
Article
PubMed
Google Scholar
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Ghasemipour AE. Tangeretin: a mechanistic review of its pharmacological and therapeutic effects. J Basic Clin Physiol Pharmacol. 2020;31. https://doi.org/10.1515/jbcpp-2019-0191.
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Resveratrol targeting the Wnt signaling pathway: a focus on therapeutic activities. J Cell Physiol. 2020;235:4135–45. https://doi.org/10.1002/jcp.29327.
CAS
Article
PubMed
Google Scholar
Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA Journal. 2016;7:23. https://doi.org/10.1186/s13167-016-0072-4.
Article
Google Scholar
Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 2002;21:1616–27. https://doi.org/10.1093/emboj/21.7.1616.
CAS
Article
PubMed
PubMed Central
Google Scholar
de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol mutagen. 2010:NA-NA. https://doi.org/10.1002/em.20575.
Annesley SJ, Fisher PR. Mitochondria in health and disease. Cells. 2019;8. https://doi.org/10.3390/cells8070680.
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95. https://doi.org/10.1016/j.cell.2005.02.001.
CAS
Article
PubMed
Google Scholar
Hiona A, Sanz A, Kujoth GC, Pamplona R, Seo AY, Hofer T, et al. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One. 2010;5:e11468. https://doi.org/10.1371/journal.pone.0011468.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61:654–66. https://doi.org/10.1016/j.molcel.2016.01.028.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hepple RT. Mitochondrial involvement and impact in aging skeletal muscle. Front Aging Neurosci. 2014;6:211. https://doi.org/10.3389/fnagi.2014.00211.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu NN, Zhang Y, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging. Oxidative Med Cell Longev. 2019;2019:9825061. https://doi.org/10.1155/2019/9825061.
CAS
Article
Google Scholar
Chen AX, Conti TF, Hom GL, Greenlee TE, Raimondi R, Briskin IN, et al. Functional imaging of mitochondria in retinal diseases using flavoprotein fluorescence. Eye. 2021;35:74–92. https://doi.org/10.1038/s41433-020-1110-y.
CAS
Article
PubMed
Google Scholar
Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, et al. Cell-free nucleic acid patterns in disease prediction and monitoring—hype or hope? EPMA Journal. 2020;11:603–27. https://doi.org/10.1007/s13167-020-00226-x.
Gerner C, Costigliola V, Golubnitschaja O. Multiomic patterns in body fluids: technological challenge with a great potential to implement the advanced paradigm of 3P medicine. Mass Spectrom Rev. 2019. https://doi.org/10.1002/mas.21612.
Polivka J, Polivka J, Pesta M, Rohan V, Celedova L, Mahajani S, et al. Risks associated with the stroke predisposition at young age: facts and hypotheses in light of individualized predictive and preventive approach. EPMA J. 2019;10:81–99. https://doi.org/10.1007/s13167-019-00162-5.
Golubnitschaja O, Flammer J. What are the biomarkers for Glaucoma? Surv Ophthalmol. 2007;52(Suppl 2):S155–61. https://doi.org/10.1016/j.survophthal.2007.08.011.
Article
PubMed
Google Scholar
Golubnitschaja O. The Keyrole of multiomics in the predictive, preventive and personalised medical approach towards Glaucoma management. Klin Monatsbl Augenheilkd. 2018;235:146–50. https://doi.org/10.1055/s-0044-101164.
Article
PubMed
Google Scholar
Yeghiazaryan K, Flammer J, Golubnitschaja O. Predictive molecular profiling in blood of healthy vasospastic individuals: clue to targeted prevention as personalised medicine to effective costs. EPMA Journal. 2010;1:263–72. https://doi.org/10.1007/s13167-010-0032-3.
Article
Google Scholar
Golubnitschaja O, editor. Flammer syndrome: From phenotype to associated pathologies, prediction, prevention and personalisation. Advances in predictive, preventive and personalised medicine. New York: Springer International Publishing; 2019.
Oboudiyat C, Glazer H, Seifan A, Greer C, Isaacson RS. Alzheimer’s disease. Semin Neurol. 2013;33:313–29. https://doi.org/10.1055/s-0033-1359319.
Article
PubMed
Google Scholar
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid Cascade hypothesis. Science. 1992;256:184–5. https://doi.org/10.1126/science.1566067.
CAS
Article
PubMed
Google Scholar
Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer’s disease: as it was in the beginning. Rev Neurosci. 2017;28:825–43. https://doi.org/10.1515/revneuro-2017-0006.
CAS
Article
PubMed
Google Scholar
Zhu J-B, Tan C-C, Tan L, Yu J-T. State of play in Alzheimer’s disease genetics. J Alzheimers Dis. 2017;58:631–59. https://doi.org/10.3233/JAD-170062.
CAS
Article
PubMed
Google Scholar
Pavlov P, Wiehager B, Sakai J, Frykman S, Behbahani H, Winblad B, et al. Mitochondrial -secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB Journal : official publication of the Federation of American Societies for Experimental Biology. 2011;25:78–88. https://doi.org/10.1096/fj.10-157230.
Mahley RW, Huang Y. Apolipoprotein E sets the stage: response to injury triggers neuropathology. Neuron. 2012;76:871–85. https://doi.org/10.1016/j.neuron.2012.11.020.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sarasija S, Norman KR. Role of Presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis Elegans. Antioxidants (Basel). 2018;7. https://doi.org/10.3390/antiox7090111.
Vassar R. ADAM10 Prodomain mutations cause late-onset Alzheimer’s disease: not just the latest FAD. Neuron. 2013;80:250–3. https://doi.org/10.1016/j.neuron.2013.09.031.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016;139(Suppl 1):216–31. https://doi.org/10.1111/jnc.13731.
CAS
Article
PubMed
Google Scholar
Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27:27–42. https://doi.org/10.1111/ene.14108.
CAS
Article
PubMed
Google Scholar
Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25–Q27. Proc Natl Acad Sci U S A. 2003;100:5956–61. https://doi.org/10.1073/pnas.0931262100.
Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest. 2003;111:145–51. https://doi.org/10.1172/JCI17575.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gómez-Benito M, Granado N, García-Sanz P, Michel,A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-Synuclein protein. Front Pharmacol 2020; 11. https://doi.org/10.3389/fphar.2020.00356.
Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 2019;42:140–9. https://doi.org/10.1016/j.tins.2018.11.001.
CAS
Article
PubMed
Google Scholar
Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res. 2018;373:21–37. https://doi.org/10.1007/s00441-017-2768-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Faustini G, Bono F, Valerio A, Pizzi M, Spano P, Bellucci A. Mitochondria and α-Synuclein: friends or foes in the pathogenesis of Parkinson’s disease? Genes (Basel). 2017;8. https://doi.org/10.3390/genes8120377.
Takahashi-Niki K, Niki T, Iguchi-Ariga S, Ariga H. Function of DJ-1 in mitochondria. Yakugaku Zasshi. 2012;132:1105–10. https://doi.org/10.1248/yakushi.12-00220-3.
CAS
Article
PubMed
Google Scholar
Durcan TM, Fon EA. The three ‘P’s of Mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015;29:989–99. https://doi.org/10.1101/gad.262758.115.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen S, Sanislav O, Annesley SJ, Fisher PR. Mitochondrial HTRA2 plays a positive, protective role in Dictyostelium Discoideum but is cytotoxic when overexpressed. Genes (Basel). 2018;9. https://doi.org/10.3390/genes9070355.
Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, et al. NH2-truncated human tau induces deregulated Mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer’s disease. Hum Mol Genet. 2015;24:3058–81. https://doi.org/10.1093/hmg/ddv059.
Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and National Burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25. https://doi.org/10.1016/j.jacc.2017.04.052.
Kralj V, Brkić BI. Morbidity and mortality from cardiovascular diseases. Cardiologia Croatica. 2013;8:373–8.
Article
Google Scholar
Gaziano JM. Global burden of cardiovascular disease. In: Braunwald’s heart disease: a textbook of cardiovascular medicine. 7th ed. Bonow R.M. & Braunwald E: Zipes D.M., Libby P; 2005. p. 1–19.
Google Scholar
European Association for Cardiovascular Prevention & Rehabilitation, Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen M-R, Wiklund O, Agewall S, Alegria E, Chapman MJ et al. ESC/EAS guidelines for the Management of Dyslipidaemias: the task force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and the European atherosclerosis society (EAS). Eur Heart J. 2011; 32:1769–1818. https://doi.org/10.1093/eurheartj/ehr158.
Saeed A, Kampangkaew J, Nambi V. Prevention of cardiovascular disease in women. Methodist Debakey Cardiovasc J. 2017;13:185–92. https://doi.org/10.14797/mdcj-13-4-185.
Article
PubMed
PubMed Central
Google Scholar
Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50:121–7. https://doi.org/10.1080/07853890.2017.1417631.
CAS
Article
PubMed
Google Scholar
Koene S, Smeitink J. Mitochondrial medicine: entering the era of treatment. J Intern Med. 2009;265:193–209. https://doi.org/10.1111/j.1365-2796.2008.02058.x.
CAS
Article
PubMed
Google Scholar
Jusic A, Devaux Y. EU-CardioRNA COST action (CA17129) mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol. 2020;115:23. https://doi.org/10.1007/s00395-020-0783-5.
CAS
Article
PubMed
Google Scholar
Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, et al. Calcium elevation in mitochondria is the Main Ca2+ requirement for mitochondrial permeability transition pore (MPTP) opening. J Biol Chem. 2009;284:20796–803. https://doi.org/10.1074/jbc.M109.025353.
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909–50. https://doi.org/10.1152/physrev.00026.2013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Holmgren D, Wåhlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M. Cardiomyopathy in children with mitochondrial disease; clinical course and Cardiological findings. Eur Heart J. 2003;24:280–8. https://doi.org/10.1016/s0195-668x(02)00387-1.
CAS
Article
PubMed
Google Scholar
Dominic EA, Ramezani A, Anker SD, Verma M, Mehta N, Rao M. Mitochondrial Cytopathies and cardiovascular disease. Heart. 2014;100:611–8. https://doi.org/10.1136/heartjnl-2013-304657.
CAS
Article
PubMed
Google Scholar
Kaski J-C, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease. Circulation. 2018;138:1463–80. https://doi.org/10.1161/CIRCULATIONAHA.118.031373.
Article
PubMed
Google Scholar
Chen Q, Camara AKS, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of Electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol. 2007;292:C137–47. https://doi.org/10.1152/ajpcell.00270.2006.
CAS
Article
PubMed
Google Scholar
Buja LM. The pathobiology of acute coronary syndromes: clinical implications and central role of the mitochondria. Tex Heart Inst J. 2013;40:221–8.
PubMed
PubMed Central
Google Scholar
Goldenthal MJ. Mitochondrial involvement in myocyte death and heart failure. Heart Fail Rev. 2016;21:137–55. https://doi.org/10.1007/s10741-016-9531-1.
CAS
Article
PubMed
Google Scholar
Webster KA. Mitochondrial death channels. Am Sci. 2009;97:384–91. https://doi.org/10.1511/2009.80.384.
Article
PubMed
PubMed Central
Google Scholar
Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128:3716–26. https://doi.org/10.1172/JCI120849.
Article
PubMed
PubMed Central
Google Scholar
Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F, Tian R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 2010;106:1541–1548. https://doi.org/10.1161/CIRCRESAHA.109.212753.
Marin-Garcia J, Goldenthal MJ, Moe GW. Mitochondrial pathology in cardiac failure. Cardiovasc Res. 2001;49:17–26. https://doi.org/10.1016/S0008-6363(00)00241-8.
CAS
Article
PubMed
Google Scholar
Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Phys. 1994;267:H742–50. https://doi.org/10.1152/ajpheart.1994.267.2.H742.
CAS
Article
Google Scholar
Tayal,U, Prasad S, Cook SA. Genetics and genomics of dilated cardiomyopathy and systolic heart failure. Genome Med 2017; 9. https://doi.org/10.1186/s13073-017-0410-8.
Garnham JO, Roberts LD, Espino-Gonzalez E, Whitehead A, Swoboda PP, Koshy A, et al. Chronic heart failure with diabetes mellitus is characterized by a severe skeletal muscle pathology. J Cachexia Sarcopenia Muscle. 2020;11:394–404. https://doi.org/10.1002/jcsm.12515.
Koklesova L, Liskova A, Samec M, Zhai K, Abotaleb M, Ashrafizadeh M, et al. Carotenoids in Cancer metastasis-status quo and outlook. Biomolecules. 2020;10. https://doi.org/10.3390/biom10121653.
Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B. Herbal medicine as inducers of apoptosis in Cancer treatment. Adv Pharm Bull. 2014;4:421–7. https://doi.org/10.5681/apb.2014.062.
Article
PubMed
PubMed Central
Google Scholar
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to Cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94. https://doi.org/10.1038/nrclinonc.2017.166.
CAS
Article
PubMed
Google Scholar
Kunin A, Sargheini N, Birkenbihl C, Moiseeva N, Fröhlich H, Golubnitschaja O. Voice perturbations under the stress overload in young individuals: phenotyping and suboptimal health as predictors for cascading pathologies. EPMA J. 2020:1–11. https://doi.org/10.1007/s13167-020-00229-8.
Goldstein E, Yeghiazaryan K, Ahmad A, Giordano FA, Fröhlich H, Golubnitschaja O. Optimal multiparametric set-up modelled for best survival outcomes in palliative treatment of liver malignancies: unsupervised machine learning and 3PM recommendations. EPMA J. 2020;11:505–15. https://doi.org/10.1007/s13167-020-00221-2.
Article
PubMed
Google Scholar
Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, et al. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of Cancer cell metabolism. EPMA J. 2020;11:377–98. https://doi.org/10.1007/s13167-020-00217-y.
Koklesova L, Liskova A, Samec M, Qaradakhi T, Zulli A, Smejkal K, et al. Genoprotective activities of plant natural substances in Cancer and Chemopreventive strategies inthe context of 3P medicine. EPMA Journal. 2020;11:261–87. https://doi.org/10.1007/s13167-020-00210-5.
Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent Cancer development and progression based on individualized patient profiles. EPMA J. 2019;10:365–81. https://doi.org/10.1007/s13167-019-00194-x.
Article
PubMed
PubMed Central
Google Scholar
Goncharenko V, Bubnov R, Polivka J, Zubor P, Biringer K, Bielik T, et al. Vaginal dryness: individualised patient profiles. Risks and Mitigating Measures EPMA J. 2019;10:73–9. https://doi.org/10.1007/s13167-019-00164-3.
Garber JE, Offit K. Hereditary Cancer predisposition syndromes. J Clin Oncol. 2005;23:276–92. https://doi.org/10.1200/JCO.2005.10.042.
Article
PubMed
Google Scholar
Golubnitschaja O, Debald M, Yeghiazaryan K, Kuhn W, Pešta M, Costigliola V, et al. Breast Cancer epidemic in the early twenty-first century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumor Biol. 2016;37:12941–57. https://doi.org/10.1007/s13277-016-5168-x.
Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, et al. Somatic mutations of the mitochondrial genome in human colorectal Tumours. Nat Genet. 1998;20:291–3. https://doi.org/10.1038/3108.
Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000;287:2017–9. https://doi.org/10.1126/science.287.5460.2017.
Carew JS, Huang P. Mitochondrial defects in Cancer. Mol Cancer. 2002;1:9. https://doi.org/10.1186/1476-4598-1-9.
Article
PubMed
PubMed Central
Google Scholar
Copeland WC, Wachsman JT, Johnson FM, Penta JS. Mitochondrial DNA alterations in Cancer. Cancer Investig. 2002;20:557–69. https://doi.org/10.1081/cnv-120002155.
CAS
Article
Google Scholar
Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in Cancer. Oncogene. 2006;25:4647–62. https://doi.org/10.1038/sj.onc.1209607.
CAS
Article
PubMed
Google Scholar
Hsu C-C, Tseng L-M, Lee H-C. Role of mitochondrial dysfunction in Cancer progression. Exp Biol Med (Maywood). 2016;241:1281–95. https://doi.org/10.1177/1535370216641787.
CAS
Article
Google Scholar
Garcia-Heredia JM, Carnero A. Decoding Warburg’s hypothesis: tumor-related mutations in the mitochondrial respiratory chain. Oncotarget. 2015;6:41582–99. https://doi.org/10.18632/oncotarget.6057.
Article
PubMed
PubMed Central
Google Scholar
Spencer NY, Stanton RC. The Warburg effect, lactate, and nearly a century of trying to cure Cancer. Semin Nephrol. 2019;39:380–93. https://doi.org/10.1016/j.semnephrol.2019.04.007.
CAS
Article
PubMed
Google Scholar
Guerra F, Guaragnella N, Arbini AA, Bucci C, Giannattasio S, Moro L. Mitochondrial dysfunction: a novel potential Driver of epithelial-to-mesenchymal transition in Cancer. Front Oncol. 2017;7. https://doi.org/10.3389/fonc.2017.00295.
Schmidt LS, Linehan WM. Hereditary Leiomyomatosis and renal cell carcinoma. Int J Nephrol Renovasc Dis. 2014;7:253–60. https://doi.org/10.2147/IJNRD.S42097.
Article
PubMed
PubMed Central
Google Scholar
Cairns RA, Mak TW. Oncogenic Isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov. 2013;3:730–41. https://doi.org/10.1158/2159-8290.CD-13-0083.
CAS
Article
PubMed
Google Scholar
Bardella C, Pollard PJ, Tomlinson I. SDH mutations in Cancer. Biochim Biophys Acta. 1807;2011:1432–43. https://doi.org/10.1016/j.bbabio.2011.07.003.
CAS
Article
Google Scholar
Fujiwara M, Marusawa H, Wang H-Q, Iwai A, Ikeuchi K, Imai Y, et al. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene. 2008;27:6002–11. https://doi.org/10.1038/onc.2008.199.
Plun-Favreau H, Lewis PA, Hardy J, Martins LM, Wood NW. Cancer and neurodegeneration: between the devil and the deep Blue Sea. PLoS Genet. 2010;6:e1001257. https://doi.org/10.1371/journal.pgen.1001257.
CAS
Article
PubMed
PubMed Central
Google Scholar
Israeli E, Yakunin E, Zarbiv Y, Hacohen-Solovich A, Kisos H, Loeb V, et al. α-Synuclein expression selectively affects tumorigenesis in mice modeling Parkinson’s disease. PLoS One. 2011;6:e19622. https://doi.org/10.1371/journal.pone.0019622.
Pérez MJ, Jara C, Quintanilla RA. Contribution of tau pathology to mitochondrial impairment in neurodegeneration. Front Neurosci. 2018;12. https://doi.org/10.3389/fnins.2018.00441.
Sekino Y, Han X, Babasaki T, Goto K, Inoue S, Hayashi T, et al. Microtubule-associated protein tau (MAPT) promotes Bicalutamide resistance and is associated with survival in prostate Cancer. Urol Oncol. 2020;38(795):e1–795.e8. https://doi.org/10.1016/j.urolonc.2020.04.032.
Hadrava Vanova K, Kraus M, Neuzil J, Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep. 2020;25:26–32. https://doi.org/10.1080/13510002.2020.1752002.
CAS
Article
PubMed
PubMed Central
Google Scholar
D’Amelio M, Ragonese P, Sconzo G, Aridon P, Savettieri G. Parkinson’s disease and Cancer: insights for pathogenesis from epidemiology. Ann N Y Acad Sci. 2009;1155:324–34. https://doi.org/10.1111/j.1749-6632.2008.03681.x.
CAS
Article
PubMed
Google Scholar
Driver JA, Logroscino G, Buring JE, Gaziano JM, Kurth T. A prospective cohort study of Cancer incidence following the diagnosis of Parkinson’s disease. Cancer Epidemiol Biomark Prev. 2007;16:1260–5. https://doi.org/10.1158/1055-9965.EPI-07-0038.
Article
Google Scholar
Zanetti R, Rosso S, Loria DI. Parkinson’s disease and cancer. Cancer Epidemiol Biomark Prev. 2007;16:1081–1. https://doi.org/10.1158/1055-9965.EPI-07-0377.
Elbaz A, Peterson BJ, Yang P, Van Gerpen JA, Bower JH, Maraganore DM, McDonnell SK, Ahlskog JE, Rocca WA. Nonfatal cancer preceding parkinson’s disease: a case-control study. Epidemiology. 2002;13:157–164. https://doi.org/10.1097/00001648-200203000-00010.
Chen C, Zheng H, Hu Z. Association between parkinson’s disease and risk of prostate cancer in different populations: an updated meta-analysis. Sci Rep. 2017;7. https://doi.org/10.1038/s41598-017-13834-x10.1038/s41598-017-13834-x.
Papageorgakopoulos TN, Moraitou D, Papanikolaou M, Tsolaki M. The association between Alzheimer’s disease and cancer: systematic review - meta-analysis. Hell J Nucl Med. 2017;20(Suppl):45–57.
PubMed
Google Scholar
Shi H, Tang B, Liu Y-W, Wang X-F, Chen G-J. Alzheimer disease and cancer risk: a meta-analysis. J Cancer Res Clin Oncol. 2015;141:485–94. https://doi.org/10.1007/s00432-014-1773-5.
Article
PubMed
Google Scholar
Ma L-L, Yu J-T, Wang H-F, Meng X-F, Tan C-C, Wang C, et al. Association between cancer and alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis. 2014;42:565–73. https://doi.org/10.3233/JAD-140168.
Ording AG, Veres K, Horváth-Puhó E, Glymour MM, Rørth M, Henderson VW, et al. Alzheimer’s and parkinson’s diseases and the risk of cancer: a cohort study. JAD. 2019;72:1269–77. https://doi.org/10.3233/JAD-190867.
Zhang P, Liu B. Association between Parkinson’s disease and risk of cancer: a PRISMA-compliant meta-analysis. ACS Chem Neurosci. 2019;10:4430–9. https://doi.org/10.1021/acschemneuro.9b00498.
CAS
Article
PubMed
Google Scholar
Catalá-López F, Suárez-Pinilla M, Suárez-Pinilla P, Valderas JM, Gómez-Beneyto M, Martinez S, et al. Inverse and direct cancer comorbidity in people with central nervous system disorders: a meta-analysis of cancer incidence in 577,013 participants of 50 observational studies. Psychother Psychosom. 2014;83:89–105. https://doi.org/10.1159/000356498.
Zaorsky NG, Zhang Y, Tchelebi LT, Mackley HB, Chinchilli VM, Zacharia BE. Stroke among cancer patients. Nat Commun. 2019;10:5172. https://doi.org/10.1038/s41467-019-13120-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600–9. https://doi.org/10.1016/j.phrs.2016.09.040.
Article
PubMed
Google Scholar
Meijers WC, de Boer RA. Common risk factors for heart failure and cancer. Cardiovasc Res 2019;115:844–853. https://doi.org/10.1093/cvr/cvz035.
Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133:1104–14. https://doi.org/10.1161/CIRCULATIONAHA.115.020406.
Article
PubMed
PubMed Central
Google Scholar
Podlesniy P, Figueiro-Silva J, Llado A, Antonell A, Sanchez-Valle R, Alcolea D, et al. Low cerebrospinal fluid concentration of mitochondrial dna in preclinical alzheimer disease. Ann Neurol. 2013;74:655–68. https://doi.org/10.1002/ana.23955.
Llano DA, Bundela S, Mudar RA, Devanarayan V. Alzheimer’s Disease Neuroimaging Initiative (ADNI) a multivariate predictive modeling approach reveals a novel csf peptide signature for both alzheimer’s disease state classification and for predicting future disease progression. PLoS One. 2017;12:e0182098. https://doi.org/10.1371/journal.pone.0182098.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kosenko EA, Aliev G, Kaminsky YG. Relationship between chronic disturbance of 2,3-diphosphoglycerate metabolism in erythrocytes and alzheimer disease. CNS Neurol Disord Drug Targets. 2016;15:113–23. https://doi.org/10.2174/1871527314666150821103444.
CAS
Article
PubMed
Google Scholar
Skoumalová A, Ivica J, Santorová P, Topinková E, Wilhelm J. The lipid peroxidation products as possible markers of alzheimer’s disease in blood. Exp Gerontol. 2011;46:38–42. https://doi.org/10.1016/j.exger.2010.09.015.
CAS
Article
PubMed
Google Scholar
Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood aβ-related biomarkers in older adults with alzheimer’s disease: a randomised, double-blind. Placebo-Controlled Trial J Neurol Neurosurg Psychiatry. 2019;90:1347–52. https://doi.org/10.1136/jnnp-2018-320199.
Article
PubMed
Google Scholar
Peña-Bautista C, Tirle T, López-Nogueroles M, Vento M, Baquero M, Cháfer-Pericás C. Oxidative damage of DNA as early marker of alzheimer’s disease. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20246136.
Munzar M, Levy S, Rush R, Averback P. Clinical study of a urinary competitve ELISA for neural thread protein in alzheimer disease. Neurol Clin Neurophysiol. 2002;2002:2–8. https://doi.org/10.1162/15268740252769709.
Article
PubMed
Google Scholar
Herbert MK, Eeftens JM, Aerts MB, Esselink RAJ, Bloem BR, Kuiperij HB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat Disord. 2014;20:112–5. https://doi.org/10.1016/j.parkreldis.2013.09.003.
García-Moreno J-M, Martín de Pablos A, García-Sánchez M-I, Méndez-Lucena C, Damas-Hermoso F, Rus M, et al. May serum levels of advanced oxidized protein products serve as a prognostic marker of disease duration in patients with idiopathic parkinson’s disease? Antioxid Redox Signal. 2013;18:1296–302. https://doi.org/10.1089/ars.2012.5026.
Smith AM, Depp C, Ryan BJ, Johnston GI, Alegre-Abarrategui J, Evetts S, et al. Mitochondrial dysfunction and increased glycolysis in prodromal and early parkinson’s blood cells. Mov Disord. 2018;33:1580–90. https://doi.org/10.1002/mds.104.
Vida C, Kobayashi H, Garrido A, Martínez de Toda I, Carro E, Molina JA, et al. Lymphoproliferation impairment and oxidative stress in blood cells from early parkinson’s disease patients. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20030771.
Pellecchia MT, Savastano R, Moccia M, Picillo M, Siano P, Erro R, et al. Lower serum uric acid is associated with mild cognitive impairment in early parkinson’s disease: a 4-year follow-up study. J Neural Transm (Vienna). 2016;123:1399–402. https://doi.org/10.1007/s00702-016-1622-6.
Luan H, Liu L-F, Tang Z, Mok VCT, Li M, Cai Z. Elevated excretion of biopyrrin as a new marker for idiopathic parkinson’s disease. Parkinsonism Relat Disord. 2015;21:1371–2. https://doi.org/10.1016/j.parkreldis.2015.09.009.
Article
PubMed
Google Scholar
Wang Y, Shen L, Xu D. Aerobic exercise reduces triglycerides by targeting apolipoprotein C3 in patients with coronary heart disease. Clin Cardiol. 2018;42:56–61. https://doi.org/10.1002/clc.23104.
Article
PubMed
PubMed Central
Google Scholar
Peacock WF, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, Wu AHB. ADHERE investigators cardiac troponin and outcome in acute heart failure. N Engl J Med 2008;358:2117–2126. https://doi.org/10.1056/NEJMoa0706824.
Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J, et al. Australia-New Zealand heart failure group plasma n-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand heart failure group. J Am Coll Cardiol. 2001;37:1781–7. https://doi.org/10.1016/s0735-1097(01)01269-4.
Feldman AM, Mann DL, She L, Bristow MR, Maisel AS, McNamara DM, et al. Prognostic significance of biomarkers in predicting outcome in patients with coronary artery disease and left ventricular dysfunction: results of the biomarker substudy of the surgical treatment for ischemic heart failure trials. Circ Heart Fail. 2013;6:461–72. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000185.
Folsom AR, Gottesman RF, Appiah D, Shahar E, Mosley TH. Plasma D-dimer and incident ischemic stroke and coronary heart disease: the atherosclerosis risk in communities study. Stroke. 2016;47:18–23. https://doi.org/10.1161/STROKEAHA.115.011035.
CAS
Article
PubMed
Google Scholar
Vilades D, Martínez-Camblor P, Ferrero-Gregori A, Bär C, Lu D, Xiao K, et al. Plasma circular RNA Hsa_circ_0001445 and coronary artery disease: performance as a biomarker. FASEB J. 2020;34:4403–14. https://doi.org/10.1096/fj.201902507R.
Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, et al. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis. 2019;286:88–96. https://doi.org/10.1016/j.atherosclerosis.2019.05.006.
Antosova M, Bencova A, Mikolka P, Kosutova P, Mokrá D, Rozborilová E. The markers of oxidative stress in patient with lung cancer. Eur Respir J. 2015;46. https://doi.org/10.1183/13993003.congress-2015.PA4267.
Shukla S, Srivastava JK, Shankar E, Kanwal R, Nawab A, Sharma H, et al. Oxidative stress and antioxidant status in high-risk prostate cancer subjects. Diagnostics (Basel). 2020;10. https://doi.org/10.3390/diagnostics10030126.
Hewala TI, Elsoud MRA. The clinical significance of serum oxidative stress biomarkers in breast cancer females. Med Res J. 2019;4:1–7. https://doi.org/10.5603/MRJ.a2018.0039.
Article
Google Scholar
Boakye D, Jansen L, Schöttker B, Jansen EHJM, Schneider M, Halama N, et al. Blood markers of oxidative stress are strongly associated with poorer prognosis in colorectal cancer patients. Int J Cancer. 2020;147:2373–86. https://doi.org/10.1002/ijc.33018.
Jain A, Bakhshi S, Thakkar H, Gerards M, Singh A. Elevated mitochondrial DNA copy numbers in pediatric acute lymphoblastic leukemia: a potential biomarker for predicting inferior survival. Pediatr Blood Cancer. 2018;65. https://doi.org/10.1002/pbc.26874.
Toraih EA, Alrefai HG, Hussein MH, Helal GM, Khashana MS, Fawzy MS. Overexpression of heat shock protein HSP90AA1 and translocase of the outer mitochondrial membrane TOM34 in HCV-induced hepatocellular carcinoma: a pilot study. Clin Biochem. 2019;63:10–7. https://doi.org/10.1016/j.clinbiochem.2018.12.001.
CAS
Article
PubMed
Google Scholar
Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria and parkinson’s disease: clinical, molecular, and translational aspects. J Parkinsons Dis. 2020. https://doi.org/10.3233/JPD-201981.
Frančula-Zaninović S, Nola IA. Management of measurable variable cardiovascular disease’ risk factors. Curr Cardiol Rev. 2018;14:153–63. https://doi.org/10.2174/1573403X14666180222102312.
Article
PubMed
PubMed Central
Google Scholar
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, et al. Carotenoids in cancer apoptosis—the road from bench to bedside and back. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12092425.
Scozz D, Cano M, Ma L, Zhou D, Zhu JH, O’Halloran JA, et al. Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19. bioRxiv. 2020. https://doi.org/10.1101/2020.07.30.227553.
Chaari L, Golubnitschaja O. Covid-19 pandemic by the “real-time” monitoring: the tunisian case and lessons for global epidemics in the context of 3PM strategies. EPMA Journal. 2020;11:133–8. https://doi.org/10.1007/s13167-020-00207-0.
Article
Google Scholar