Skip to main content
Log in

Variational problems with variable regular bilateral constraints in variable domains

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We establish conditions for the convergence of minimizers and minimum values of integral and more general functionals on sets of functions defined by bilateral constraints in variable domains. The constraints and domains under consideration depend on the same natural parameter, and the constraints belong to Sobolev spaces related to the given domains. The main condition on the constraints is the convergence to zero of the measure of the set where the difference between the upper and lower constraints is less than a positive measurable function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Amaziane, B., Goncharenko, M., Pankratov, L.: \(\varGamma _D\)-convergence for a class of quasilinear elliptic equations in thin structures. Math. Methods Appl. Sci. 28(15), 1847–1865 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization, 2nd edn. SIAM, Philadelphia (2014)

    Book  MATH  Google Scholar 

  4. Attouch, H., Picard, C.: Variational inequalities with varying obstacles: the general form of the limit problem. J. Funct. Anal. 50(3), 329–386 (1983)

    Article  MathSciNet  Google Scholar 

  5. Dal Maso, G.: Asymptotic behaviour of minimum problems with bilateral obstacles. Ann. Mat. Pura Appl. 129(1), 327–366 (1981)

    Article  MathSciNet  Google Scholar 

  6. Dal Maso, G.: \(\varGamma \)-convergence and \(\mu \)-capacities. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 14(3), 423–464 (1987)

  7. Dal Maso, G.: An Introduction to \({\varGamma }\)-Convergence. Birkhäuser, Boston (1993)

    Book  Google Scholar 

  8. Dal Maso, G., Longo, P.: \(\varGamma \)-limits of obstacles. Ann. Mat. Pura Appl. 128(1), 1–50 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8) 58(6), 842–850 (1975)

    MathSciNet  MATH  Google Scholar 

  10. Khruslov, E.Ya.: The asymptotic behavior of solutions of the second boundary value problem under fragmentation of the boundary of the domain. Math. USSR-Sb. 35(2), 266–282 (1979)

  11. Kovalevskii, A.A.: Some problems connected with the problem of averaging variational problems for functionals with a variable domain. In: Mitropol’skii, Yu. A. (ed.) Current Analysis and its Applications, pp. 62–70. Naukova Dumka, Kiev (1989) [in Russian]

  12. Kovalevskii, A.A.: Conditions for \({\varGamma }\)-convergence and homogenization of integral functionals with different domains. Dokl. Akad. Nauk Ukrain. SSR No. 4, 5–8 (1991). [in Russian]

    MathSciNet  Google Scholar 

  13. Kovalevskii, A.A.: On necessary and sufficient conditions for the \({\varGamma }\)-convergence of integral functionals with different domains of definition. Nelinein. Granichnye Zadachi 4, 29–39 (1992). [in Russian]

    Google Scholar 

  14. Kovalevskii, A.A.: \(G\)-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain. Russ. Acad. Sci. Izv. Math. 44(3), 431–460 (1995)

    Google Scholar 

  15. Kovalevskii, A.A.: On the \(\varGamma \)-convergence of integral functionals defined on Sobolev weakly connected spaces. Ukr. Math. J. 48(5), 683–698 (1996)

    Article  Google Scholar 

  16. Kovalevsky, A.A.: On \(L^1\)-functions with a very singular behaviour. Nonlinear Anal. 85, 66–77 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kovalevsky, A.A.: On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains. Nonlinear Anal. 147, 63–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kovalevsky, A.A.: On the convergence of solutions of variational problems with bilateral obstacles in variable domains. Proc. Steklov Inst. Math. 296(suppl. 1), 151–163 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. AMS, Providence (1997)

    Book  MATH  Google Scholar 

  20. Marchenko, V.A., Khruslov, E.Ya.: Homogenization of Partial Differential Equations. Birkhäuser, Boston (2006)

  21. Murat, F.: Sur l’homogeneisation d’inequations elliptiques du 2ème ordre, relatives au convexe \(K(\psi _1,\psi _2)=\{v\in H^1_0(\varOmega )\, | \,\psi _1\leqslant v\leqslant \psi _2\, {\rm p. p.}\, {\rm dans}\, \varOmega \}\). Publ. Laboratoire d’Analyse Numérique, No. 76013, Univ. Paris VI (1976)

  22. Pankratov, L.: \(\varGamma \)-convergence of nonlinear functionals in thin reticulated structures. C. R. Math. Acad. Sci. Paris 335(3), 315–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rudakova, O.A.: On \({\varGamma }\)-convergence of integral functionals defined on various weighted Sobolev spaces. Ukr. Math. J. 61(1), 121–139 (2009)

    Article  MathSciNet  Google Scholar 

  24. Vainberg, M.M.: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Wiley, New York (1974)

    Google Scholar 

  25. Velichkov, B.: Existence and Regularity Results for Some Shape Optimization Problems. Tesi. Scuola Normale Superiore, Pisa (2015)

    Book  MATH  Google Scholar 

  26. Zhikov, V.V.: Questions of convergence, duality, and averaging for functionals of the calculus of variations. Math. USSR-Izv. 23(2), 243–276 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhikov, V.V.: On passage to the limit in nonlinear variational problems. Russ. Acad. Sci. Sb. Math. 76(2), 427–459 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Russian Academic Excellence Project (Agreement No. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kovalevsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalevsky, A.A. Variational problems with variable regular bilateral constraints in variable domains. Rev Mat Complut 32, 327–351 (2019). https://doi.org/10.1007/s13163-018-0281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-018-0281-6

Keywords

Mathematics Subject Classification

Navigation