Skip to main content
Log in

An optimal matching problem with constraints

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We deal with an optimal matching problem with constraints, that is, we want to transport two measures with the same total mass in \({\mathbb {R}}^N\) to a given place (the target set), where they will match and in which we have constraints on the amount of matter we can take to points in the target set. This transport has to be done optimally, minimizing the total transport cost, that in our case is given by the sum of the Euclidean distances that each measure is transported. Here we show that such a problem has a solution. First, we solve the problem using mass transport arguments and next we perform a method to approximate the solution of the problem taking limit as \(p\rightarrow \infty \) in a p-Laplacian type variational problem. In the particular case in which the target set is contained in a hypersurface, we deal with an optimal transport problem through a membrane, that is, we want to transport two measures which are located in different locations separated by a membrane (the hypersurface) which only let through a predetermined amount of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Mathematics, vol. 1812, pp. 1–52. Springer, Berlin (2003)

  2. Barrett, J.W., Prigozhin, L.: Partial \(L^1\) Monge–Kantorovich problem: variational formulation and numerical approximation. Interfaces Free Bound. 11, 201–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  4. Carlier, G.: Duality and existence for a class of mass transportation problems and economic applications. Adv. Math. Econ. 5, 1–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlier, G., Ekeland, I.: Matching for teams. Econ. Theory 42, 397–418 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Champion, T., De Pascale, L.: The Monge problem in \({\mathbb{R}}^d\). Duke Math. J. 157, 551–572 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiappori, P.-A., McCann, R., Nesheim, L.: Hedonic prices equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness. Econ. Theory 42, 317–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ekeland, I.: An optimal matching problem. ESAIM COCV 11, 57–71 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ekeland, I.: Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types. Econ. Theory 42(2), 275–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland, I.: Notes on optimal transportation. Econ. Theory 42(2), 437–459 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ekeland, I., Hecckman, J.J., Nesheim, L.: Identification and estimates of hedonic models. J. Polit. Econ. 112, S60–S109 (2004)

    Article  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations. Graduate Studies Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  13. Evans, L.C.: Partial differential equations and Monge–Kantorovich mass transfer. In: Current Developments in Mathematics, 1997 (Cambridge, MA), pp. 65–126. International Press, Boston (1999)

  14. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137, 653 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. 39, 42–47 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  16. Igbida, N., Mazón, J.M., Rossi, J.D., Toledo, J.J.: A Monge–Kantorovich mass transport problem for a discrete distance. J. Funct. Anal. 260, 3494–3534 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kantorovich, L.V.: On the tranfer of masses. Dokl. Nauk. SSSR 37, 227–229 (1942)

    Google Scholar 

  18. Mazón, J.M., Rossi, J.D., Toledo, J.J.: An optimal transportation problem with a cost given by the euclidean distance plus import/export taxes on the boundary. Rev. Mat. Iberoam. 30(1), 277–308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mazón, J.M., Rossi, J.D., Toledo, J.J.: An optimal matching problem for the Euclidean distance. SIAM J. Math. Anal. 46, 233–255 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mazón, J.M., Rossi, J.D., Toledo, J.J.: Optimal matching problems with costs given by Finsler distances. Commun. Pure Appl. Anal. 14, 229–244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mazón, J.M., Rossi, J.D., Toledo, J.J.: Optimal mass transport on metric graphs. SIAM J. Optim. 25, 1609–1632 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. AMS, Providence (2003)

    MATH  Google Scholar 

  23. Villani, C.: Optimal Transport. Old and New. Grundlehren der MathematischenWissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin (2009)

    Google Scholar 

Download references

Acknowledgements

The authors have been partially supported by the Spanish MINECO and FEDER, Project MTM2015-70227-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Mazón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazón, J.M., Rossi, J.D. & Toledo, J. An optimal matching problem with constraints. Rev Mat Complut 31, 407–447 (2018). https://doi.org/10.1007/s13163-018-0256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-018-0256-7

Keywords

Mathematics Subject Classification

Navigation