Skip to main content
Log in

On the inverse uniformization problem: real Schottky uniformizations

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

Classical uniformization theorem, together with Torelli’s theorem, assert that each closed Riemann surface may be described in terms of Fuchsian uniformizations (highests uniformizations), Schottky uniformizations (lowest uniformizations), algebraic curves, Riemann period matrices, etc. The inverse uniformization problem may be stated as to provide any or some of the other descriptions once one of them is given. In general (part of) this inverse problem has been (numerically) partially solved for hyperelliptic Riemann surfaces.

In this paper we provide a family of real Riemann surfaces, in general non-hyperelliptic ones, which are described in terms of Fuchsian and Schottky uniformizations. The explicit relation between these two uniformizations is given. The Schottky uniformization is used to compute a suitable Riemann period matrix of the uniformized surface so that its coefficients are given in terms of the corresponding Schottky group. Two explicit examples, one of genus 2 and the other of genus 3 (non-hyperelliptic), are provided and (numerically) algebraic curve representations are given for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V., Sario, L.: Riemann Surfaces. Princeton Univ. Press, Princeton (1960)

    MATH  Google Scholar 

  2. Aigon, A., Silhol, R.: Hyperbolic hexagons and algebraic curves in genus 3. J. Lond. Math. Soc. 66, 671–690 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belyı̌, G.V.: On Galois extensions of a maximal cyclotomic. Math. USSR Izv. 14, 247–265 (1980)

    Article  Google Scholar 

  4. Bers, L.: Automorphic forms for Schottky groups. Adv. Math. 16, 332–361 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burnside, W.: On a class of automorphic functions. Proc. Lond. Math. Soc. 23, 49–88 (1892)

    Article  MATH  Google Scholar 

  6. Buser, P., Silhol, R.: Geodesics, periods and equations of real hyperelliptic curves. Duke Math. J. 108, 211–250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buser, P., Silhol, R.: Some remarks on the uniformizing function in genus 2. Geom. Dedicata 115, 121–133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chuckrow, V.: On Schottky groups with applications to Kleinian groups. Ann. Math. 88, 47–61 (1968)

    Article  MathSciNet  Google Scholar 

  9. Cohn, H.: Conformal Mappings on Riemann Surfaces. Dover Publications, New York (1967)

    Google Scholar 

  10. Debarre, O.: The Schottky problem: an update. In: Current Topics in Complex Algebraic Geometry, Berkeley, CA, 1992/93. Math. Sci. Res. Inst. Publ., vol. 28, pp. 57–64. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  11. Deconinck, B., van Hoeij, M.: Computing Riemann matrices of algebraic curves. Physica D 152–153, 28–46 (2001)

    Article  Google Scholar 

  12. Farkas, H., Kra, I.: Riemann Surfaces, 2nd edn. Springer, Berlin (1991)

    Google Scholar 

  13. Koebe, P.: Über die Uniformisierung der Algebraischen Kurven II. Math. Ann. 69, 1–81 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koebe, P.: Über die Uniformisierung reeller algebraischer Kurven. Nachr. Akad. Wiss. Goettingen, 177–190 (1907)

  15. Hidalgo, R.A.: On the 12(g−1) bound. C. R. Math. Rep. Acad. Sci. Can. 18, 39–42 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Hidalgo, R.A.: Real surfaces, Riemann matrices and algebraic curves. In: Complex Manifolds and Hyperbolic Geometry, Guanajuato, 2001. Contemp. Math., vol. 311, pp. 277–299. Am. Math. Soc., Providence (2002)

    Google Scholar 

  17. Hidalgo, R.A.: Hyperbolic polygons real Schottky groups. Complex Var. 48, 43–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hidalgo, R.A.: A theoretical algorithm to get a Schottky uniformization from a Fuchsian one. In: Analysis and Mathematica Physics. Trends in Mathematics, pp. 193–204. Birkhäuser, Basel (2009)

    Chapter  Google Scholar 

  19. Hidalgo, R.A., Figueroa, J.: Numerical Schottky uniformizations. Geom. Dedicata 111, 125–157 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hidalgo, R.A., Seppälä, M.: Numerical Schottky uniformizations: Myrberg’s opening process. Preprint

  21. Marden, A.: Schottky groups and circles. In: Contribution to Analysis. A Collection of Papers Dedicated to Lipman Bers, pp. 273–278 (1994)

  22. Maskit, B.: Kleinian Groups. G.M.W., vol. 287. Springer, Berlin (1988)

    MATH  Google Scholar 

  23. Maskit, B.: Characterization of Schottky groups. J. Anal. Math. 19, 227–230 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maskit, B.: The conformal group of a plane domain. Am. J. Math. 90, 718–722 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsuzaki, K., Taniguchi, M.: Hyperbolic Manifolds and Kleinina Groups. Oxford Mathematical Monographs. Oxford Science Publications. Clarendon Press, Oxford University Press, New York (1998)

    Google Scholar 

  26. Myrberg, J.P.: Über die Numerische Ausführung der Uniformisierung. Acta Soc. Sci. Fenn. XLVIII(7), 1–53 (1920)

    Google Scholar 

  27. Seppälä, M.: Myrberg’s numerical uniformization of hyperelliptic curves. Ann. Acad. Sci. Fenn. Math. 29, 3–20 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Seppälä, M., Silhol, R.: Moduli spaces of for real algebraic curves and real abelian varieties. Math. Z. 201, 151–165 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tretkoff, C.L., Tretkoff, M.D.: Combinatorial Group Theory, Riemann surfaces and differential equations. In: Contributions to Group Theory. Contemp. Math., vol. 33, pp. 467–519. Am. Math. Soc., Providence (1984)

    Google Scholar 

  30. Weil, A.: The field of definition of a variety. Am. J. Math. 78, 509–524 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wolfart, J.: The obvious part of Belyi’s theorem and Riemann surfaces with many automorphisms. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions 1. London Math. Soc. Lect. Notes Ser., vol. 242. Cambridge (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén A. Hidalgo.

Additional information

Research partially supported by projects Fondecyt 1070271 and UTFSM 12.09.02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo, R.A. On the inverse uniformization problem: real Schottky uniformizations. Rev Mat Complut 24, 391–420 (2011). https://doi.org/10.1007/s13163-010-0046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-010-0046-3

Keywords

Mathematics Subject Classification (2000)

Navigation