Skip to main content
Log in

A three-term projection method based on spectral secant equation for nonlinear monotone equations

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a three-term derivative-free projection algorithm for handling large-scale nonlinear monotone equations with convex constrained. The search direction generated by the proposed algorithm satisfies sufficient descent condition at every iteration. Under some suitable conditions, the global convergence of the algorithm is established. Numerical experiments are provided to show the algorithm is promising and competitive for solving monotone nonlinear equations. In addition, we applied the algorithm to solve signal processing problem arising from compressive sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data openly available in a public repository.

References

  1. Meintjes, K., Morgan, A.P.: Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw. 16, 143–151 (1990)

    Article  Google Scholar 

  2. Ghaddar, B., Marecek, J., Mevissen, M.: Optimal power flow as a polynomial optimization problem. IEEE Trans. Power Syst. 31, 539–546 (2016)

    Article  Google Scholar 

  3. Xiao, Y.H., Wang, Q.Y., Hu, Q.J.: Non-smooth equations based methods for \(l_1\)-norm problems with applications to compressed sensing. Nonlinear Anal. Theory Methods Appl. 74, 3570–3577 (2011)

    Article  Google Scholar 

  4. Zhao, Y.B., Li, D.: Monotonicity of fixed point and normal mappings associated with variational inequality and its application. SIAM J. Optim. 11, 962–973 (2001)

    Article  MathSciNet  Google Scholar 

  5. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs (1983)

    Google Scholar 

  6. Solodov, M.V., Svaiter, B.F.: A Globally Convergent Inexact Newton Method for Systems of Monotone Equations. Kluwer Academic Publisher, Kluwer (1988)

    Google Scholar 

  7. Zhou, G., Toh, K.C.: Superline convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory. Appl. 125, 205–221 (2005)

    Article  MathSciNet  Google Scholar 

  8. Li, D.H., Fukushima, M.: A globally and superlinearly convergent Gauss-Newton based BFGS method for symmetric equations. SIAM. J. Numer. Anal. 37, 152–172 (1999)

    Article  MathSciNet  Google Scholar 

  9. Zhou, W.J.: A modified BFGS type quasi-Newton method with line search for symmetric nonlinear equations problems. J. Comput. Appl. Math. 367, 112454 (2020)

    Article  MathSciNet  Google Scholar 

  10. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  Google Scholar 

  11. Liu, J.K., Feng, Y.M.: A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algorithm 82, 245–262 (2018)

    Article  MathSciNet  Google Scholar 

  12. Dai, Y.H., Yuan, Y.X.: A nonlinear conjugate gradient with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)

    Article  MathSciNet  Google Scholar 

  13. Abdullahi, M., Abubakar, A.B., Liu, J.K., Feng, Y.M.: A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algorithm (2023). https://doi.org/10.1007/s11075-023-01546-5

    Article  MathSciNet  Google Scholar 

  14. Abdullahi, M., Abubakar, A.B., Muangchoo, K.: Modified three-term derivative-free projection method for solving nonlinear monotone equations with application. Numer. Algorithm (2023). https://doi.org/10.1007/s11075-023-01616-8

    Article  Google Scholar 

  15. Abdullahi, M., Abubakar, A.B., Salihu, S.B.: Global convergence via modified self-adaptive approach for Solving Constrained Monotone Nonlinear Equations with application to Signal Recovery Problems. RAIRO-Oper. Res. (2023). https://doi.org/10.1051/ro/2023099

    Article  MathSciNet  Google Scholar 

  16. Ibrahim, A.H., Garba, A.I., Usman, H., Abubakar, J., Abubakar, A.B.: Derivative-free RMIL conjugate gradient algorithm for convex constrained equations. Thai J. Math. 18, 211–231 (2019)

    MathSciNet  Google Scholar 

  17. Rivaie, M., Mamat, M., June, L.W., Mohd, I.: A new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 218, 11323–11332 (2012)

    MathSciNet  Google Scholar 

  18. Awwal, A.M., Wang, L., Kumam, P., Mohammad, H., Watthayu, W.: A projection Hestenes-Stiefel method with spectral parameter for nonlinear monotone equations and signal processing. Math. Comput. Appl. 25, 27 (2020)

    MathSciNet  Google Scholar 

  19. Amini, K., Faramarzi, P., Pirfalah, N.: A modified Hestenes-Stiefel conjugate gradient method with an optimal property. Optim. Methods Softw. 34, 770–782 (2019)

    Article  MathSciNet  Google Scholar 

  20. Abubakar, A.B., Kumam, P., Mohammad, H., Ibrahim, A.H.: PRP-like algorithm for monotone operator equations. Jpn. J. Ind. Appl. Math. 38, 805–822 (2021)

    Article  MathSciNet  Google Scholar 

  21. Li, Q., Zheng, B.: Scaled three-term derivative-free methods for solving large-scale nonlinear monotone equations. Numer. Algorithm 87, 1343–1367 (2021)

    Article  MathSciNet  Google Scholar 

  22. Bojari, S., Eslahchi, M.R.: Two families of scaled three-term conjugate gradient methods with sufficient descent property for nonconvex optimization. Numer. Algorithm 83, 901–933 (2020)

    Article  MathSciNet  Google Scholar 

  23. Liu, H., Yao, Y., Qian, X., Wang, H.J.: Some nonlinear conjugate gradient methods based on spectral scaling secant equations. Comp. Appl. Math. 35, 639–651 (2016)

    Article  MathSciNet  Google Scholar 

  24. Abubakar, A.B., Kumam, P., Mohammad, H., Ibrahim, A.H.: PRP-like algorithm for monotone operator equations. Jpn. J. Ind. Appl. Math. 38, 805–822 (2021)

    Article  MathSciNet  Google Scholar 

  25. Gao, P.T., Wang, T., Liu, X.L., Wu, Y.F.: An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications. 41, 89 (2022)

  26. Waziri, M.Y., Muhammad, H.U., Halilu, A.S., Ahmed, K.: Modified matrix-free methods for solving system of nonlinear equations. Optimization 71, 2321–2340 (2021)

    Article  MathSciNet  Google Scholar 

  27. La Cruz, W., Martínez, J., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MathSciNet  Google Scholar 

  28. Gao, P.T., He, C.J.: An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints. Calcolo 55, 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  29. Liu, J.K., Lu, Z.L., Xu, J.L.: An efficient projection-based algorithm without Lipschitz continuity for large-scale nonlinear pseudo-monotone equations. J. Comput. Appl. Math. 403, 113822 (2022)

    Article  MathSciNet  Google Scholar 

  30. Bongartz, I., Conn, A.R., Gould, N., Toint, P.L.: CUTEr: constrained and unconstrained testing environment. ACM. Trans. Math. Softw. 21, 123–160 (1995)

    Article  Google Scholar 

  31. Zhang, N., Liu, J.K., Zhang, L.Q., Lu, Z.L.: A fast inertial self-adaptive projection based algorithm for solving large-scale nonlinear monotone equations. J. Comput. Appl. Math. 426, 115087 (2023)

    Article  MathSciNet  Google Scholar 

  32. Dolan, E.D., More, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  33. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 4, 586–597 (2007)

    Article  Google Scholar 

  34. Xiao, Y.H., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405, 310–319 (2013)

    Article  MathSciNet  Google Scholar 

  35. Xiao, Y.H., Wang, Q.Y., Hu, Q.J.: Non-smooth equations based method for \(l_1\)-norm problems with applications to compressed sensing. Nonlinear Anal. Theory Methods Appl. 74, 3570–3577 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Zhang or J. K. Liu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by Chongqing Research Program of Basic Research and Frontier Technology, China (Grant number: cstc2021jcyj-msxmX0233), and the Foundation of Intelligent Ecotourism Subject Group of Chongqing Three Gorges University (Grant number: zhlv20221006),Chongqing Three Gorges University graduate research innovation project (Grant number: CYS23735).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Liu, J.K. & Tang, B. A three-term projection method based on spectral secant equation for nonlinear monotone equations. Japan J. Indust. Appl. Math. 41, 617–635 (2024). https://doi.org/10.1007/s13160-023-00624-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00624-4

Keywords

Navigation