Skip to main content
Log in

PRP-like algorithm for monotone operator equations

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Many studies have been devoted to develop and improve the iterative methods for solving convex constraint nonlinear equations problem (CCP). Based on the projection technique, we introduce a derivative-free method for approximating the solution of CCP. The proposed method is suitable for solving large-scale nonlinear equations due to its lower storage requirements. The directions generated by the proposed method at every iteration are bounded. Under some mild conditions, we establish the global convergence result of the proposed method. Numerical experiments are provided to show the efficiency of the method in solving CCP. Moreover, we tested the capability of the method in solving the monotone nonlinear operator equation equivalent to the \(\ell _1\)-norm regularized minimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abubakar, A.B., Kumam, P., Awwal, A.M.: A descent Dai-Liao projection method for convex constrained nonlinear monotone equations with applications. Thai J. Math. 17(1) (2018)

  2. Abubakar, A.B., Kumam, P., Ibrahim, A.H., Rilwan, J.: Derivative-free HS-DY-type method for solving nonlinear equations and image restoration. Heliyon 6(11), e05400 (2020)

    Google Scholar 

  3. Abubakar, A.B., Kumam, P., Mohammad, H.: A note on the spectral gradient projection method for nonlinear monotone equations with applications. Comput. Appl. Math. 39, 129 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Abubakar, A.B., Kumam, P., Mohammad, H., Awwal, A.M.: An efficient conjugate gradient method for convex constrained monotone nonlinear equations with applications. Mathematics 7(9), 767 (2019)

    Google Scholar 

  5. Abubakar, A.B., Kumam, P., Mohammad, H., Awwal, A.M.: A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration. J. Frankl. Inst. 357(11), 7266–7285 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Abubakar, A.B., Kumam, P., Mohammad, H., Awwal, A.M., Kanokwan, S.: A modified Fletcher-Reeves conjugate gradient method for monotone nonlinear equations with some applications. Mathematics 7(8), 745 (2019)

    Google Scholar 

  7. Abubakar, A.B., Waziri, M.Y.: A matrix-free approach for solving systems of nonlinear equations. J. Mod. Methods Numer. Math. 7(1), 1–9 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Abubakar, A.B., Ibrahim, A.H., Muhammad, A.B., Tammer, C.: A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations. Appl. Anal. Optim. 4, 1–24 (2020)

    MathSciNet  Google Scholar 

  9. Ahookhosh, M., Amini, K., Bahrami, S.: Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations. Numer. Algorithms 64(1), 21–42 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Awwal, A.M., Kumam, P., Mohammad, H., Watthayu, W., Abubakar, A.B.: A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing \(\ell _1\) regularized problem. Optimization (2020). https://doi.org/10.1080/02331934.2020.1808647

    Article  MATH  Google Scholar 

  11. Awwal, A.M., Wang, L., Kumam, P., Mohammad, H.: A two-step spectral gradient projection method for system of nonlinear monotone equations and image deblurring problems. Symmetry 12(6), 874 (2020)

    Google Scholar 

  12. Awwal, A.M., Wang, L., Kumam, P., Mohammad, H., Watthayu, W.: A projection Hestenes–Stiefel method with spectral parameter for nonlinear monotone equations and signal processing. Math. Comput. Appl. 25(2), 27 (2020)

    MathSciNet  Google Scholar 

  13. Becker, S.R., Candès, E.J., Grant, M.C.: Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3(3), 165 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Bing, Y., Lin, G.: An efficient implementation of Merrill’s method for sparse or partially separable systems of nonlinear equations. SIAM J. Optim. 1(2), 206–221 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Blumensath, T.: Compressed sensing with nonlinear observations and related nonlinear optimization problems. IEEE Trans. Inf. Theory 59(6), 3466–3474 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Candes, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Chorowski, J., Zurada, J.M.: Learning understandable neural networks with nonnegative weight constraints. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 62–69 (2014)

    MathSciNet  Google Scholar 

  19. Dai, Z., Dong, X., Kang, J., Hong, L.: Forecasting stock market returns: new technical indicators and two-step economic constraint method. N. Am. J. Econ. Finance 53, 101216 (2020)

    Google Scholar 

  20. Danmalan, K.U., Mohammad, H., Abubakar, A.B., Awwal, A.M.: Hybrid algorithm for system of nonlinear monotone equations based on the convex combination of Fletcher-Reeves and a new conjugate residual parameters. Thai J. Math. 4(18), 2093–2106 (2021)

    MathSciNet  Google Scholar 

  21. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28(126), 549–560 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Dennis, J.E., Jr., Moré, J.J.: Quasi-newton methods, motivation and theory. SIAM Rev. 19(1), 46–89 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Dirkse, S.P., Ferris, M.C.: Mcplib: a collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5(4), 319–345 (1995)

    Google Scholar 

  24. Févotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the β-divergence. Neural. comput. 23(9), 2421–2456 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Gao, P., He, C., Liu, Y.: An adaptive family of projection methods for constrained monotone nonlinear equations with applications. Appl. Math. Comput. 359, 1–16 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Hager, W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16(1), 170–192 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Hager, W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Ibrahim, A.H., Kumam, P., Abubakar, A.B., Jirakitpuwapat, W., Abubakar, J.: A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing. Heliyon 6(3), e03466 (2020)

    Google Scholar 

  29. Ibrahim, A.H., Kumam, P., Abubakar, A.B., Yusuf, U.B., Yimer, S.E., Aremu, K.O.: An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration. AIMS Math. 6(1), 235 (2020)

    MathSciNet  Google Scholar 

  30. Ibrahim, A.H., Kumam, P., Kumam, W.: A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration. IEEE Access 8, 162714–162729 (2020)

    Google Scholar 

  31. Koorapetse, M., Kaelo, P.: A new three-term conjugate gradient-based projection method for solving large-scale nonlinear monotone equations. Math. Model. Anal. 24(4), 550–563 (2019)

    MathSciNet  Google Scholar 

  32. La Cruz, W., Martínez, J., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75(255), 1429–1448 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Li, D., Fukushima, M.: A globally and superlinearly convergent gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Li, Q., Li, D.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31(4), 1625–1635 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Liu, J.K., Li, S.J.: A projection method for convex constrained monotone nonlinear equations with applications. Comput. Math. Appl. 70(10), 2442–2453 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Lukšan, L., Vlcek, J.: Test problems for unconstrained optimization. Academy of Sciences of the Czech Republic, Institute of Computer Science, Technical Report, pp. 897 (2003)

  37. Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22(4), 333–361 (1987)

    MathSciNet  MATH  Google Scholar 

  38. Mohammad, H.: A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. J. Ind. Manag. Optim. 17(1), 101–116 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Mohammad, H., Abubakar, A.B.: A positive spectral gradient-like method for large-scale nonlinear monotone equations. Bull. Comput. Appl. Math. 5(1), 99–115 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Mohammad, H., Abubakar, A.B.: A descent derivative-free algorithm for nonlinear monotone equations with convex constraints. RAIRO-Oper. Res. 54(2), 489–505 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Mohammad, H., Waziri, M.Y.: On Broyden-like update via some quadratures for solving nonlinear systems of equations. Turk. J. Math. 39(3), 335–345 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. (TOMS) 7(1), 17–41 (1981)

    MathSciNet  MATH  Google Scholar 

  43. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Narushima, Y., Yabe, H.: A survey of sufficient descent conjugate gradient methods for unconstrained optimization. SUT J. Math. 50(2), 167–203 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Narushima, Y., Yabe, H., Ford, J.A.: A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. SIAM J. Optim. 21(1), 212–230 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Ou, Y., Li, J.: A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints. J. Appl. Math. Comput. 56(1–2), 195–216 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. Revue Française d’informatique et de Recherche opéRationnelle. Série Rouge 3(16), 35–43 (1969)

    MATH  Google Scholar 

  48. Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9(4), 94–112 (1969)

    MATH  Google Scholar 

  49. Qi, L., Sun, J.: A nonsmooth version of newton’s method. Math. Program. 58(1–3), 353–367 (1993)

    MathSciNet  MATH  Google Scholar 

  50. Sun, M., Liu, J.: Three modified Polak–Ribiere–Polyak conjugate gradient methods with sufficient descent property. J. Inequal. Appl. 2015(1), 125 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proces. 13(4), 600–612 (2004)

    Google Scholar 

  52. Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Operation, and Control. Wiley, New York (2013)

    Google Scholar 

  53. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    MathSciNet  MATH  Google Scholar 

  54. Xiao, Y., Wang, Q., Hu, Q.: Non-smooth equations based method for \(\ell _1\)-norm problems with applications to compressed sensing. Nonlinear Anal. Theory Methods Appl. 74(11), 3570–3577 (2011)

    MATH  Google Scholar 

  55. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. In: Alefeld, G., Chen, X. (eds.) Topics in Numerical Analysis, Computing Supplementa, vol. 15. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6217-0_18

    Chapter  Google Scholar 

  56. Yu, Z., Lin, J., Sun, J., Xiao, Y., Liu, L., Li, Z.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59(10), 2416–2423 (2009)

    MathSciNet  MATH  Google Scholar 

  57. Yuan, G., Zhang, M.: A three-term Polak–Ribière–Poylak conjugate gradient algorithm for large-scale nonlinear equations. J. Comput. Appl. Math. 286, 186–195 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Zhang, H., Zhou, Y., Liang, Y., Chi, Y.: A nonconvex approach for phase retrieval: reshaped wirtinger flow and incremental algorithms. J. Mach. Learn. Res. 18(1), 5164–5198 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Zhang, L., Zhou, W., Li, D.: Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104(4), 561–572 (2006)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, L., Zhou, W., Li, D.H.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22(4), 697–711 (2007)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26(4), 629–640 (2006)

    MathSciNet  MATH  Google Scholar 

  62. Zheng, Y., Zheng, B.: Two new Dai-Liao-type conjugate gradient methods for unconstrained optimization problems. J. Optim. Theory Appl. 175(2), 502–509 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Zhou, G., Toh, K.C.: Superlinear convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory Appl. 125(1), 205–221 (2005)

    MathSciNet  MATH  Google Scholar 

  64. Zhou, W., Li, D.H.: Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 25(1), 89–96 (2007)

    MathSciNet  Google Scholar 

  65. Zhou, W., Wang, F.: A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math. Comput. 261, 1–7 (2015)

    MathSciNet  MATH  Google Scholar 

  66. Zhou, W.J., Li, D.H.: A globally convergent BFGS method for nonlinear monotone equations without any merit functions. Math. Comput. 77(264), 2231–2240 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT. Also, the (first) author, (Dr. Auwal Bala Abubakar) would like to thank the Postdoctoral Fellowship from King Mongkut’s University of Technology Thonburi (KMUTT), Thailand. Moreover, this research project is supported by Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under project number 64A306000005. The first author acknowledge with thanks, the Department of Mathematics and Applied Mathematics at the Sefako Makgatho Health Sciences University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poom Kumam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubakar, A.B., Kumam, P., Mohammad, H. et al. PRP-like algorithm for monotone operator equations. Japan J. Indust. Appl. Math. 38, 805–822 (2021). https://doi.org/10.1007/s13160-021-00462-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-021-00462-2

Keywords

Mathematics Subject Classification

Navigation