Skip to main content
Log in

A model-free shrinking-dimer saddle dynamics for finding saddle point and solution landscape

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a model-free shrinking-dimer saddle dynamics for finding any-index saddle points and constructing the solution landscapes, in which the force in the standard saddle dynamics is replaced by a surrogate model trained by the Gassian process learning. By this means, the exact form of the model is no longer necessary such that the saddle dynamics could be implemented based only on some observations of the force. This data-driven approach not only avoids the modeling procedure that could be difficult or inaccurate, but also significantly reduces the number of queries of the force that may be expensive or time-consuming. We accordingly develop a sequential learning saddle dynamics algorithm to perform a sequence of local saddle dynamics, in which the queries of the training samples and the update or retraining of the surrogate force are performed online and around the latent trajectory in order to improve the accuracy of the surrogate model and the value of each sampling. Numerical experiments are performed to demonstrate the effectiveness and efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Foresman, J., Head-Gordon, M., Pople, J., Frisch, M.: Toward a systematic molecular orbital theory for excited states. J. Phys. Chem. 96, 135–149 (1992)

    Google Scholar 

  2. Allison, J., Guo, T., Han, Z.: Co-design of an active suspension using simultaneous dynamic optimization. ASME J. Mech. Des. 136, 081003 (2014)

    Google Scholar 

  3. Chen, C., Xie, Z.: Search extension method for multiple solutions of a nonlinear problem. Comput. Math. Appl. 47, 327–343 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Dauphin, Y., Pascanu, R., Gulcehre, C.: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. 2012 Proceedings of the 25th International Conference on Neural Information Processing Systems, Cambridge, USA, 2933–2941 (2012)

  5. Denzel, A., Kastner, J.: Gaussian process regression for transition state search. J. Chem. Theory Comput. 14, 5777–5786 (2018)

    Google Scholar 

  6. Deshmukh, A., Allison, J.: Design of dynamic systems using surrogate models of derivative functions. ASME. J. Mech. Des. 139, 101402 (2017)

    Google Scholar 

  7. Doye, J., Wales, D.: The Structure and stability of atomic liquids: From clusters to bulk. Science 271, 484–487 (1996)

    Google Scholar 

  8. Doye, J., Wales, D., Berry, R.: The effect of the range of the potential on the structures of clusters. J. Chem. Phys. 103, 4234–4249 (1995)

    Google Scholar 

  9. Duo, S., Wang, H.: A fractional phase-field model using an infinitesimal generator of \(\alpha\) stable Lévy process. J. Comput. Phys. 384, 253–269 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Duo, S., Zhang, Y.: Computing the ground and first excited states of the fractional schrödinger equation in an infinite potential well. Commun. Comput. Phys. 18, 321–350 (2015)

    MathSciNet  MATH  Google Scholar 

  11. E, W., Zhou, X.: The gentlest ascent dynamics. Nonlinearity 24, 1831–1842 (2011)

    MathSciNet  MATH  Google Scholar 

  12. E, W., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)

    Google Scholar 

  13. D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., Zhou, Z.: Numerical methods for nonlocal and fractional models. Acta Num. 29, 1–124 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Gao, W., Leng, J., Zhou, X.: An iterative minimization formulation for saddle point search. SIAM J. Numer. Anal. 53, 1786–1805 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Gould, N., Ortner, C., Packwood, D.: A dimer-type saddle search algorithm with preconditioning and linesearch. Math. Comp. 85, 2939–2966 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Gu, S., Wang, H., Zhou, X.: Active learning for transition state calculation. J. Sci. Comput. 93, 78 (2022)

    MATH  Google Scholar 

  17. Han, Y., Yin, J., Zhang, P., Majumdar, A., Zhang, L.: Solution landscape of a reduced Landau-de Gennes model on a hexagon. Nonlinearity 34, 2048–2069 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Han, Y., Yin, J., Hu, Y., Majumdar, A., Zhang, L.: Solution landscapes of the simplified Ericksen-Leslie model and its comparison with the reduced Landau-de Gennes model. Proc. Roy. Soc. A-Math. Phy. 477, 20210458 (2021)

    MathSciNet  Google Scholar 

  19. Heidrich, D., Quapp, W.: Saddle points of index 2 on potential energy surfaces and their role in theoretical reactivity investigations. Theor. Chim. Acta 70, 89–98 (1986)

    Google Scholar 

  20. Henkelman, G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999)

    Google Scholar 

  21. Koistinen, O., Dagbjartsdóttir, F., Ásgeirsson, V., Vehtari, A., Jónsson, H.: Nudged elastic band calculations accelerated with Gaussian process regression. J. Chem. Phys. 147, 152720 (2017)

    Google Scholar 

  22. Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear PDEs. SIAM J. Sci. Comput. 23, 840–865 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M., Ainsworth, M., Karniadakis, G.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Liu, H., Cai, J., Ong, Y.: Remarks on multi-output Gaussian process regression. Knowledge-Based Syst. 144, 102–121 (2018)

    Google Scholar 

  25. Liu, W., Xie, Z., Yi, W.: Normalized Goldstein-type local minimax method for finding multiple unstable solutions of semilinear elliptic PDEs. Commun. Math. Sci. 19, 147–174 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Liu, X., Zhu, Q., Lu, H.: Modeling multiresponse surfaces for airfoil design with multiple-output-Gaussian-process regression. J. Aircr. 51, 740–747 (2014)

    Google Scholar 

  27. Luo, Y., Zheng, X., Cheng, X., Zhang, L.: Convergence analysis of discrete high-index saddle dynamics. SIAM J. Numer. Anal. 60, 2731–2750 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Mehta, D.: Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. Phys. Rev. E 84, 025702 (2011)

    Google Scholar 

  29. Milnor, J. W.: Morse Theory, Princeton University Press, (1963)

  30. Morse, P.: Diatomic molecules according to the wave mechanics II. Vib. Lev. Phys. Rev. 34, 57–64 (1929)

    MATH  Google Scholar 

  31. Nie, Q., Qiao, L., Qiu, Y., Zhang, L., Zhao, W.: Noise control and utility: from regulatory network to spatial patterning. Sci. China Math. 63, 425–440 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Powel, M.: Algorithms for nonlinear constraints that use Lagrangian function. Math. Programm. 14, 224–248 (1978)

    MathSciNet  Google Scholar 

  33. Raissi, M., Perdikaris, P., Karniadakis, G.: Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys. 348, 683–693 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Rasmussen, C., Williams, C.: Gaussian processes for machine learning. MIT Press, (2006)

  35. Sheng, C., Shen, J., Tang, T., Wang, L., Yuan, H.: Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains. SIAM J. Numer. Anal. 58, 2435–2464 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Shi, B., Han, Y., Zhang, L.: Nematic liquid crystals in a rectangular confinement: Solution landscape, and bifurcation. SIAM J. Appl. Math. 82, 1808–1828 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Song, F., Xu, C., Karniadakis, G.: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Engrg. 305, 376–404 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Tang, B.: Orthogonal array-based Latin hypercubes. J. Amer. Stat. Assoc. 88, 1392–1397 (1993)

    MathSciNet  MATH  Google Scholar 

  39. Wales, D.: Energy landscapes of clusters bound by short-ranged potentials. Chem. Phys. Chem. 11, 2491–2494 (2010)

    Google Scholar 

  40. Wang, W., Zhang, L., Zhang, P.: Modelling and computation of liquid crystals. Acta Num. 30, 765–851 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Xie, Z., Yuan, Y., Zhou, J.: On finding multiple solutions to a singularly perturbed Neumann problem. SIAM J. Sci. Comput. 34, A395–A420 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Yin, J., Jiang, K., Shi, A.-C., Zhang, P., Zhang, L.: Transition pathways connecting crystals and quasicrystals. Proc. Natl. Acad. Sci. U.S.A. 118, e2106230118 (2021)

    Google Scholar 

  43. Yin, J., Wang, Y., Chen, J., Zhang, P., Zhang, L.: Construction of a pathway map on a complicated energy landscape. Phys. Rev. Lett. 124, 090601 (2020)

    MathSciNet  Google Scholar 

  44. Yin, J., Zhang, L., Zhang, P.: High-index optimization-based shrinking dimer method for finding high-index saddle points. SIAM J. Sci. Comput. 41, A3576–A3595 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Yin, J., Yu, B., Zhang, L.: Searching the solution landscape by generalized high-index saddle dynamics. Sci. China Math. 64, 1801 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Yu, B., Zheng, X., Zhang, P., Zhang, L.: Computing solution landscape of nonlinear space-fractional problems via fast approximation algorithm. J. Comput. Phys. 468, 111513 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, J., Du, Q.: Shrinking dimer dynamics and its applications to saddle point search. SIAM J. Numer. Anal. 50, 1899–1921 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, J., Du, Q.: Constrained shrinking dimer dynamics for saddle point search with constraints. J. Comput. Phys. 231, 4745–4758 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, L., Chen, L., Du, Q.: Morphology of critical nuclei in solid-state phase transformations. Phys. Rev. Lett. 98, 265703 (2007)

    Google Scholar 

  50. Zhang, L., Chen, L., Du, Q.: Simultaneous prediction of morphologies of a critical nucleus and an equilibrium precipitate in solids. Commun. Comput. Phys. 7, 674–682 (2010)

    MATH  Google Scholar 

  51. Zhang, L., Du, Q., Zheng, Z.: Optimization-based shrinking dimer method for finding transition states. SIAM J. Sci. Comput. 38, A528–A544 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, L., Ren, W., Samanta, A., Du, Q.: Recent developments in computational modelling of nucleation in phase transformations. NPJ Comput. Mater. 2, 16003 (2016)

    Google Scholar 

  53. Zhang, L., Zhang, P., Zheng, X.: Error estimates of Euler discretization to high-index saddle dynamics. SIAM J. Numer. Anal. 60, 2925–2944 (2022)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, L., Zhang, P., Zheng, X.: Mathematical and numerical analysis to shrinking-dimer saddle dynamics with local Lipschitz conditions. CSIAM Trans. Appl. Math. 4, 157–176 (2023)

    MathSciNet  Google Scholar 

  55. Zhang, L., Zhang, P., Zheng, X.: Discretization and index-robust error analysis for constrained high-index saddle dynamics on high-dimensional sphere. Sci. China Math. (2023). https://doi.org/10.1007/s11425-022-2149-2

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Dr. Siwei Duo for providing the MATLAB code of computing the fractional Laplacian in [10].

Funding

This work was partially supported by the National Key R &D Program of China No. 2021YFF1200500, the Taishan Scholars Program of Shandong Province, and the National Natural Science Foundation of China No. 12225102, 12050002, 12288101.

Author information

Authors and Affiliations

Authors

Contributions

LZ: Conceptualization, Funding acquisition, Methodology, Supervision, Writing – review & editing. PZ: Funding acquisition, Supervision. XZ: Formal analysis, Funding acquisition, Investigation, Methodology, Visualization, Writing – original draft.

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, P. & Zheng, X. A model-free shrinking-dimer saddle dynamics for finding saddle point and solution landscape. Japan J. Indust. Appl. Math. 40, 1677–1693 (2023). https://doi.org/10.1007/s13160-023-00604-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00604-8

Keywords

Mathematics Subject Classification

Navigation