Skip to main content
Log in

An unconditionally stable threshold dynamics method for the Willmore flow

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a threshold dynamics method for the Willmore flow with a new kernel constructed based on the combination of a Gaussian kernel and a Cosine function. We show the consistency of the method by asymptotic analysis and construct a Lyapunov functional to show the unconditional stability of the proposed method. Compare to previous work, no artificial parameters are required for the construction of the kernel. Numerical experiments including area preservation or perimeter preservation are performed to show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bao, W., Jiang, W., Wang, Y., Zhao, Q.: A parametric finite element method for solid-state Dewetting problems with anisotropic surface energies. J. Comput. Phys. 330, 380–400 (2017). https://doi.org/10.1016/j.jcp.2016.11.015

    Article  MathSciNet  MATH  Google Scholar 

  2. Barles, G., Georgelin, C.: A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. 32(2), 484–500 (1995). https://doi.org/10.1137/0732020

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnetier, E., Bretin, E., Chambolle, A.: Consistency result for a non monotone scheme for anisotropic mean curvature flow. Interfaces Free Bound. 14(1), 1–35 (2012). https://doi.org/10.4171/IFB/272

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A., Novaga, M.: Convergence of an algorithm for the anisotropic and crystalline mean curvature flow. SIAM J. Math. Anal. 37(6), 1978–1987 (2006). https://doi.org/10.1137/050629641

    Article  MathSciNet  MATH  Google Scholar 

  5. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18(3), 1249–1267 (2005). https://doi.org/10.1088/0951-7715/18/3/016

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004). https://doi.org/10.1016/j.jcp.2004.01.029

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Q., Liu, C., Wang, X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006). https://doi.org/10.1016/j.jcp.2005.07.020

    Article  MathSciNet  MATH  Google Scholar 

  8. Elsey, M., Esedoglu, S.: Threshold dynamics for anisotropic surface energies. Math. Comput. 87(312), 1721–1756 (2017). https://doi.org/10.1090/mcom/3268

    Article  MathSciNet  MATH  Google Scholar 

  9. Esedoglu, S., Guo, J.: A monotone, second order accurate scheme for curvature motion. arXiv preprint arXiv:2112.04693 (2021)

  10. Esedoglu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68(5), 808–864 (2015). https://doi.org/10.1002/cpa.21527

    Article  MathSciNet  MATH  Google Scholar 

  11. Esedoglu, S., Tsai, R., Ruuth, S.: Threshold dynamics for high order geometric motions. In: Interfaces and Free Boundaries, pp. 263–282 (2008). https://doi.org/10.4171/ifb/189

  12. Esedoglu, S., Tsai, Y.-H.R., et al.: Threshold dynamics for the piecewise constant Mumford–Shah functional. J. Comput. Phys. 211(1), 367–384 (2006). https://doi.org/10.1016/j.jcp.2005.05.027

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, L. C.: Convergence of an algorithm for mean curvature motion. In: Indiana University Mathematics Journal 42.2, pp. 533–557 (1993)

  14. van Gennip, Y., Guillen, N., Osting, B., Bertozzi, A.L.: Mean curvature, threshold dynamics, and phase field theory on finite graphs. Milan J. Math. 82(1), 3–65 (2014). https://doi.org/10.1007/s00032-014-0216-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Glimm, J., Li, X.L., Liu, Y., Zhao, N.: Conservative front tracking and level set algorithms. Proc. Natl. Acad. Sci. 98(25), 14198–14201 (2001). https://doi.org/10.1073/pnas.251420998

    Article  MathSciNet  MATH  Google Scholar 

  16. Ishii, H., Pires, G. E., Souganidis, P. E.: Threshold dynamics type approximation schemes for propagating fronts. In: Journal of the Mathematical Society of Japan 51.2, pp. 267–308 (1999). https://doi.org/10.2969/jmsj/05120267

  17. Jacobs, M., Merkurjev, E., Esedoglu, S.: Auction dynamics: a volume constrained MBO scheme. J. Comput. Phys. 354(1), 288–310 (2018). https://doi.org/10.1016/j.jcp.2017.10.036

    Article  MathSciNet  MATH  Google Scholar 

  18. Laux, T., Otto, F.: Convergence of the thresholding scheme for multi-phase mean-curvature flow. Calc. Var. Partial Differ. Equ. 55(5), 129 (2016). https://doi.org/10.1007/s00526-016-1053-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Laux, T., Swartz, D.: Convergence of thresholding schemes incorporating bulk effects. Interfaces Free Bound. 19(2), 273–304 (2017). https://doi.org/10.4171/IFB/383

    Article  MathSciNet  MATH  Google Scholar 

  20. Laux, T., Yip, N.K.: Analysis of diffusion generated motion for mean curvature flow in codimension two: a gradient-flow approach. Arch. Ration. Mech. Anal. (2018). https://doi.org/10.1007/s00205-018-01340-x

    Article  MATH  Google Scholar 

  21. Li, J., Renardy, Y.: Numerical study of flows of two immiscible liquids at low Reynolds number. SIAM Rev. 42(3), 417–439 (2000). https://doi.org/10.1137/s0036144599354604

    Article  MathSciNet  MATH  Google Scholar 

  22. Merkurjev, E., Kostic, T., Bertozzi, A.L.: An MBO scheme on graphs for classification and image processing. SIAM J. Imaging Sci. 6(4), 1903–1930 (2013). https://doi.org/10.1137/120886935

    Article  MathSciNet  MATH  Google Scholar 

  23. Merriman, B., Bence, J. K., Osher, S.: Diffusion generated motion by mean curvature. UCLA CAM Report 92-18. (1992)

  24. Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994). https://doi.org/10.1006/jcph.1994.1105

    Article  MathSciNet  MATH  Google Scholar 

  25. Merriman, B., Bence, J., Osher, S.: Diffusion generated motion by mean curvature. AMS Selected Letters, Crystal Grower’s Workshop. Ed. by J. Taylor, pp 73–83 (1993)

  26. Merriman, B., Ruuth, S.J.: Convolution-generated motion and generalized Huygens’ principles for interface motion. SIAM J. Appl. Math. 60(3), 868–890 (2000). https://doi.org/10.1137/S003613999833397X

    Article  MathSciNet  MATH  Google Scholar 

  27. Osher, S., Fedkiw, R., Piechor, K.: Level set methods and dynamic implicit surfaces. Appl. Mech. Rev. 57(3), B15–B15 (2004)

    Article  Google Scholar 

  28. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Osting, B., Wang, D.: A diffusion generated method for orthogonal matrix-valued fields. Math. Comput. 89(322), 515–550 (2019). https://doi.org/10.1090/mcom/3473

    Article  MathSciNet  MATH  Google Scholar 

  30. Ruuth, S.J., Merriman, B., Xin, J., Osher, S.: Diffusion-generated motion by mean curvature for filaments. J. Nonlinear Sci. 11(6), 473–493 (2001). https://doi.org/10.1007/s00332-001-0404-x

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruuth, S.J., Wetton, B.T.: A simple scheme for volume-preserving motion by mean curvature. J. Sci. Comput. 19(1–3), 373–384 (2003). https://doi.org/10.1023/A:1025368328471

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruuth, S.J., Merriman, B.: Convolution-thresholding methods for interface motion. J. Comput. Phys. 169(2), 678–707 (2001). https://doi.org/10.1006/jcph.2000.6580

    Article  MathSciNet  MATH  Google Scholar 

  33. Salvador, T., Esedoglu, S.: A simplified threshold dynamics algorithm for isotropic surface energies. J. Sci. Comput. 79(1), 648–669 (2018). https://doi.org/10.1007/s10915-018-0866-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Swartz, D., Yip, N.K.: Convergence of diffusion generated motion to motion by mean curvature. Commun. Partial Differ. Equ. 42(10), 1598–1643 (2017). https://doi.org/10.1080/03605302.2017.1383418

    Article  MathSciNet  MATH  Google Scholar 

  35. Viertel, R., Osting, B.: An approach to quad meshing based on harmonic cross valued maps and the Ginzburg–Landau theory. SIAM J. Sci. Comput. 41(1), A452–A479 (2019). https://doi.org/10.1137/17M1142703

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, D.: An efficient unconditionally stable method for Dirichlet partitions in arbitrary domains. SIAM J. Sci. Comput. 44(4), A2061–A2088 (2022). https://doi.org/10.1137/21m1443406

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, D., Li, H., Wei, X., Wang, X.-P.: An efficient iterative thresholding method for image segmentation. J. Comput. Phys. 350(1), 657–667 (2017). https://doi.org/10.1016/j.jcp.2017.08.020

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, D., Osting, B.: A diffusion generated method for computing Dirichlet partitions. J. Comput. Appl. Math. 351, 302–316 (2019). https://doi.org/10.1016/j.cam.2018.11.015

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, D., Wang, X.-P.: The iterative convolution-thresholding method (ICTM) for image segmentation. Pattern Recogn. 130, 108794 (2022). https://doi.org/10.1016/j.patcog.2022.108794

    Article  Google Scholar 

  40. Wang, D., Wang, X.-P., Xu, X.: An improved threshold dynamics method for wetting dynamics. J. Comput. Phys. 392, 291–310 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, X., Du, Q.: Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56(3), 347–371 (2007). https://doi.org/10.1007/s00285-007-0118-2

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, X., Wang, D., Wang, X.-P.: An efficient threshold dynamics method for wetting on rough surfaces. J. Comput. Phys. 330(1), 510–528 (2017). https://doi.org/10.1016/j.jcp.2016.11.008

    Article  MathSciNet  MATH  Google Scholar 

  43. Zaitzeff, A., Esedoglu, S., Garikipati, K.: Second order threshold dynamics schemes for two phase motion by mean curvature. J. Comput. Phys. 410, 109404 (2020). https://doi.org/10.1016/j.jcp.2020.109404

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao, Q., Jiang, W., Bao, W.: A parametric finite element method for solid-state Dewetting problems in three dimensions. SIAM J. Sci. Comput. 42(1), B327–B352 (2020). https://doi.org/10.1137/19m1281666

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Hu acknowledges support from National Natural Science Foundation of China grant (Grant No. 12201532), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515111068) and Shenzhen Science and Technology Innovation Program (Grant No. RCBS20210609103231040). D. Wang acknowledges support from National Natural Science Foundation of China grant (Grant No. 12101524), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515012199) and Shenzhen Science and Technology Innovation Program (Grant No. JCYJ20220530143803007, RCYX20221008092843046). X.-P. Wang acknowledges support from National Natural Science Foundation of China (NSFC) grant (No. 12271461), the key project of NSFC (No. 12131010), and the Hong Kong Research Grants Council GRF (GRF grants 16308421, 16305819, 16303318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of (26)

Appendix A: Proof of (26)

Proof

When \(n=0\), we have

$$\begin{aligned}\frac{\partial ^0}{\partial a^0}\left[ \frac{1}{a}\exp \left( -\frac{c^2}{a}\right) \right] =\frac{1}{a}\exp \left( -\frac{c^2}{a}\right) =\left[ \sum _{k=0}^{0}{\frac{{0!}^2}{{k!}^2 (0-k)!}(-1)^{0-k}a^{-0-k-1}c^{2k}}\right] \exp \left( -\frac{c^2}{a}\right) .\end{aligned}$$

Assume that

$$\begin{aligned} \frac{\partial ^n}{\partial a^n}\left[ \frac{1}{a}\exp \left( -\frac{c^2}{a}\right) \right] =\left[ \sum _{k=0}^{n}{\frac{{n!}^2}{{k!}^2 (n-k)!}(-1)^{n-k}a^{-n-k-1}c^{2k}}\right] \exp \left( -\frac{c^2}{a}\right) . \end{aligned}$$

Then, direct calculation yields

$$\begin{aligned} \begin{aligned}&\frac{\partial ^{n+1}}{\partial a^{n+1}}\left[ \frac{1}{a}\exp \left( -\frac{c^2}{a}\right) \right] =\frac{\partial }{\partial a} \frac{\partial ^n}{\partial a^n}\left[ \frac{1}{a}\exp \left( -\frac{c^2}{a}\right) \right] \\&\quad =\frac{\partial }{\partial a} \left[ \sum _{k=0}^{n}{\frac{{n!}^2}{{k!}^2 (n-k)!}(-1)^{n-k}a^{-n-k-1}c^{2k}}\right] \exp \left( -\frac{c^2}{a}\right) \\&\quad =\left[ \sum _{k=0}^{n}{\frac{{n!}^2}{{k!}^2 (n-k)!}(-1)^{n-k}(-n-k-1)a^{-n-k-2}c^{2k}}\right. \\&\qquad \left. +\sum _{k=0}^{n}{\frac{{n!}^2}{{k!}^2 (n-k)!}(-1)^{n-k}a^{-n-k-3}c^{2k+2}}\right] \exp \left( -\frac{c^2}{a}\right) \\&\quad =\left[ \sum _{k=0}^{n}{\frac{{n!}^2}{{k!}^2 (n-k)!}(-1)^{(n+1)-k}((n+1)+k)a^{-(n+1)-k-1}c^{2k}} \right. \\&\qquad + \left. \sum _{k=1}^{n+1}{\frac{{n!}^2}{{(k-1)!}^2 (n-(k-1))!}(-1)^{n-(k-1)}a^{-n-(k-1)-3}c^{2k}}\right] \exp \left( -\frac{c^2}{a}\right) \\&\quad =\left[ \sum _{k=0}^{n}{\frac{((n+1)+k)((n+1)-k)}{(n+1)^2} \frac{{(n+1)!}^2}{{k!}^2 ((n+1)-k)!}(-1)^{(n+1)-k}a^{-(n+1)-k-1}c^{2k}} \right. \\&\qquad + \left. \sum _{k=1}^{n+1}{\frac{k^2}{(n+1)^2} \frac{{(n+1)!}^2}{{k!}^2 ((n+1)-k))!}(-1)^{(n+1)-k}a^{-(n+1)-k-1}c^{2k}} \right] \exp \left( -\frac{c^2}{a}\right) \\&\quad =\left[ \sum _{k=0}^{n+1}{\frac{{(n+1)!}^2}{{k!}^2 ((n+1)-k)!}(-1)^{(n+1)-k}a^{-(n+1)-k-1}c^{2k}}\right] \exp \left( -\frac{c^2}{a}\right) . \end{aligned} \end{aligned}$$

Here, the last equality comes from the comparison between terms for \(k=0, \ldots , n+1\) by direct calculation and cancellation. \(\square\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Lin, Z., Wang, D. et al. An unconditionally stable threshold dynamics method for the Willmore flow. Japan J. Indust. Appl. Math. 40, 1519–1546 (2023). https://doi.org/10.1007/s13160-023-00590-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00590-x

Keywords

Navigation