Skip to main content
Log in

Comoving mesh method for certain classes of moving boundary problems

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A Lagrangian-type numerical scheme called the “comoving mesh method” or CMM is developed for numerically solving certain classes of moving boundary problems which include, for example, the classical Hele-Shaw flow problem and the well-known mean curvature flow problem. This finite element scheme exploits the idea that the normal velocity field of the moving boundary can be extended smoothly throughout the entire domain of definition of the problem using, for instance, the Laplace operator. Then, the boundary as well as the finite element mesh of the domain are easily updated at every time step by moving the nodal points along this velocity field. The feasibility of the method, highlighting its practicality, is illustrated through various numerical experiments. Furthermore, in order to examine the accuracy of the proposed scheme, the experimental order of convergences between the numerical and exact solutions for these examples are also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Acker, A.: An extremal problem involving distributed resistance. SIAM J. Math. Anal. 12, 169–172 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Afkhami, S., Renardy, Y.: A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations. Phys. Fluids 25(8), 082001 (2013)

    Article  MATH  Google Scholar 

  3. Azegami, H.: A solution to domain optimization problems. Trans. Jpn. Soc. Mech. Eng. Ser. A 60, 1479–1486 (in Japanese) (1994)

  4. Azegami, H.: Shape Optimization Problems. Springer Optimization and Its Applications, Springer, Singapore (2020)

    Book  MATH  Google Scholar 

  5. Baines, M.J., Hubbard, M.E., Jimack, P.K.: Velocity-based moving mesh methods for nonlinear partial differential equations. Commun. Comput. Phys. 10(3), 509–576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baiocchi, C.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, Amsterdam (1984)

  7. Crank, J.: Free and Moving Boundary Problems. Clarendon Press, New York (1984)

  8. Cummings, L.J., Howison, S.D., King, J.R.: Two-dimensional Stokes and Hele-Shaw flows with free surfaces. Eur. J. Appl. Math. 10, 635–680 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, Q., Lei, Y., Zhang, B., Feng, D., Wang, X., Yin, X.: A practical adaptive moving-mesh algorithm for solving unconfined seepage problem with galerkin finite element method. Sci. Rep. 96988, 15 (2019)

    Google Scholar 

  10. Delfour, M.C.,Zolésio, J.P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Adv. Des. Control. vol. 22, 2nd edn. SIAM, PA (2011)

  11. Du, Q., Feng, X.B.: The phase field method for geometric moving interfaces and their numerical approximations, in Geometric Partial Differential Equations, Part I, Handbook of Numerical Analysis, vol. 21, chap. 5, pp. 425–508. Elsevier (2020)

  12. Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elliot, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston (1982)

    Google Scholar 

  14. Elliott, C.M.: On a variational inequality formulation of an electrical machining moving boundary problem and its approximation by the finite element method. J. Inst. Math. Appl. 25, 121–131 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, C.M., Janovský, V.: A variational inequality approach to Hele-Shaw flow with a moving boundary. Proc. R. Soc. Edinburgh 88(A), 93–107 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eppler, K., Harbrecht, H.: Efficient treatment of stationary free boundary problems. Appl. Numer. Math. 56, 1326–1339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Escher, J., Simonnet, G.: Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28(5), 1028–1047 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fasano, A., Primicerio, M.: Blow-up and regularization for the hele-shaw problem. In: Friedman, A., Spruck, J. (eds.) Variational and Free Boundary Problems, Mathematics and its Applications, vol. 53, pp. 73–85. Springer, New York, IMA (1993)

  19. Flucher, M.: An asymptotic formula for the minimal capacity among sets of equal area. Calc. Var. 1, 71–86 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Flucher, M., Rumpf, M.: Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486, 165–204 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Friedman, A.: Time dependent free boundary problems. SIAM Rev. 21, 213–221 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Friedman, A.: Free-boundary problem in fluid dynamics. Astérisque, Soc. Math. Fr. 118, 55–67 (1984)

  23. Friedrichs, K.: Über ein minimumproblem für potentialströmungen mit freiem rand. Math. Ann. 109, 60–82 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gage, M., Hamilton, R.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grayson, M.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gustafsson, B.: Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows. SIAM J. Math. Anal. 16(2), 279–300 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gustafsson, B., Vasilév, A.: Conformal and Potential Analysis in Hele-Shaw Cell. Advances in Mathematical Fluid Mechanics. Bikhäuser, Basel (2006)

    Google Scholar 

  28. Hirt, C., Nichols, B.: Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  29. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, New York (1983–1985)

  30. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)

    Book  MATH  Google Scholar 

  31. Huisken, G.: Flow by mean curvature of convex surfaces into sphere. J. Differ. Geom. 20, 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kees, C.E., Farthing, M.W., Lackey, T.C., Berger, R.C.: A review of methods for moving boundary problems. Tech. Rep. ERDC/CHL TR-09-10, U. S. Army Engineer Research and Development Center (2009)

  33. Kimura, M.: Numerical analysis for moving boundary problems using the boundary tracking method. Jpn. J. Indust. Appl. Math 14, 373–398 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kimura, M.: Geometry of hypersurfaces and moving hyper surfaces in \(R^m\) for the study of moving boundary problems, Jindr̆ich Nec̆as Center for Mathematical Modeling Lecture notes, vol. IV, chap. 2, pp. 39–93. Matfyzpress (2008)

  35. Kimura, M., Notsu, H.: A level set method using the signed distance function. Jpn. J. Indust. Appl. Math 19, 415–446 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Knupp, P., Steinberg, S.: The Fundamentals of Grid Generation, vol. 3. CRC Press, London, UK (1993)

    MATH  Google Scholar 

  37. Lacey, A.A., Shillor, M.: Electrochemical and electro-discharge machining with a threshold current. IMA J. Numer. Anal. 39(2), 121–142 (1987)

    MathSciNet  MATH  Google Scholar 

  38. Liseikin, V.D.: Grid Generation Methods, 3rd edn. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  39. Milne-Thomson, L.M.: Theoretical Hydrodynamics. Dover, New York (1996)

  40. Morrow, L.C., Moroney, T.J., Dallaston, M.C., McCue, S.W.: A review of one-phase Hele-Shaw flows and a level-set method for non-standard configurations (2021). arXiv:2101.07447

  41. Neuberger, J.: Sobolev Gradients and Differential Equations, Lecture Notes in Mathematics, vol. 1670, 2nd edn. Springer, Berlin (2010)

  42. Nochetto, R.H., Verdi, C.: Combined effect of explicit time-stepping and quadrature for curvature driven flows. Numer. Math. 74, 105–136 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rabago, J.F.T.: Analysis and numerics of novel shape optimization methods for the Bernoulli problem. Ph.D. thesis, Nagoya University, Nagoya, Japan (2020)

  44. Richardson, S.: Hele-Shaw flows with a free boundary produced by the injection of the fluid into a narrow channel. J. Fluid Mech. 56, 609–618 (1972)

    Article  MATH  Google Scholar 

  45. Sakakibara, K., Yazaki, S.: A charge simulation method for the computation of Hele-Shaw problems. RIMS Kôkyûroku 1957, 116–133 (2015)

    Google Scholar 

  46. Salari, K., Knupp, P.: Code verification by the method of manufactured solutions. Tech. rep, Sandia National Laboratories (2000)

    Book  Google Scholar 

  47. Sokołowski, J., Zolésio, J.P.: Introduction to Shape Optimization. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)

    MATH  Google Scholar 

  48. Spekreijse, S.P.: Elliptic grid generation based on Laplace equations and algebraic transformations. J. Comput. Phys. 118(1), 38–61 (1995)

    Article  MATH  Google Scholar 

  49. Thompson, J.F.: A survey of dynamically-adaptive grids in the numerical solution of partial differential equations. Appl. Numer. Math. 1(1) (1985)

Download references

Acknowledgements

The work of MK was supported by JSPS KAKENHI Grant Number JP20KK0058. JFTR acknowledges the support from JST CREST Grant Number JPMJCR2014. We are grateful to the referee for carefully reading and making suggestions to improve the paper. Some of the results in this paper were presented at the Czech-Japanese Seminar in Applied Mathematics 2021 held virtually on January 5 - 7 2021. YS thanks the conference’s organizers for giving him the opportunity to present the results of the study during the meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Sunayama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Lemma 1

A Proof of Lemma 1

Proof

Let us now prove Lemma 1. Consider system (5.5) whose solution is given by \({\mathbf {{v}}}^i:={\mathbf {{v}}}({\mathbf {{g}}}^i)\). Also, consider the Dirichlet-to-Neumann map \(\Lambda : H^{1/2}(\varGamma ;{\mathbb {R}}^d) \rightarrow H^{-1/2}(\varGamma ;{\mathbb {R}}^d)\). Then, for \({\mathbf {{g}}}^1, {\mathbf {{g}}}^2 \in H^{1/2}(\varGamma ;{\mathbb {R}}^d)\), the binary operation \(({\mathbf {{g}}}^1, {\mathbf {{g}}}^2)_{\Lambda } := (\Lambda {\mathbf {{g}}}^1, {\mathbf {{g}}}^2)_{L^2(\varGamma ;{\mathbb {R}}^d)}\) is an inner product on \(H^{1/2}(\varGamma ;{\mathbb {R}}^d)\). Indeed, we have the following arguments

  1. (i)

    since, for any \({\mathbf {{g}}}^3 \in H^{1/2}(\varGamma ;{\mathbb {R}}^d)\) and \(c \in {\mathbb {R}}\), we have \((\Lambda (c {\mathbf {{g}}}^1 + {\mathbf {{g}}}^2), {\mathbf {{g}}}^3)_{L^2(\varGamma ;{\mathbb {R}}^d)} = \int _{\varGamma } (c \nabla {\mathbf {{v}}}^1 + \nabla {\mathbf {{v}}}^2)\cdot \nu \, {\mathbf {{v}}}^3\, \mathrm{d}s = c (\Lambda {\mathbf {{g}}}^1, {\mathbf {{g}}}^3)_{L^2(\varGamma ;{\mathbb {R}}^d)} + (\Lambda {\mathbf {{g}}}^2, {\mathbf {{g}}}^3)_{L^2(\varGamma ;{\mathbb {R}}^d)}\), then \((\, \cdot \,, \, \cdot \,)_{\Lambda }\) is linear with respect to its first argument;

  2. (ii)

    the binary operation \((\, \cdot \,, \, \cdot \,)_{\Lambda }\) is positive definite because, for any \({\mathbf {{g}}}^2 \in H^{1/2}(\varGamma ;{\mathbb {R}}^d)\), we have \((\Lambda {\mathbf {{g}}}, {\mathbf {{g}}})_{L^2(\varGamma ;{\mathbb {R}}^d)} = \int _{\varGamma } (\nabla {\mathbf {{v}}} \cdot \nu ) {\mathbf {{v}}}\ \mathrm{d}s = \int _{{\overline{\Omega }}{\setminus } B} |\nabla {\mathbf {{v}}}|^2 \ \mathrm{d}x \geqslant 0;\)

  3. (iii)

    also, it is point-separating, that is \((\Lambda {\mathbf {{g}}}, {\mathbf {{g}}})_{L^2(\varGamma ;{\mathbb {R}}^d)} = 0\) if and only if \({\mathbf {{g}}} \equiv {\mathbf {{0}}}\); and,

  4. (iv)

    lastly, the operation is symmetric because \((\Lambda {\mathbf {{g}}}^1, {\mathbf {{g}}}^2)_{L^2(\varGamma ;{\mathbb {R}}^d)} = \int _{\varGamma } (\nabla {\mathbf {{v}}}^1 \cdot \nu ) {\mathbf {{v}}}^2\ \mathrm{d}s = \int _{{\overline{\Omega }}{\setminus } B} \nabla {\mathbf {{v}}}^1 : \nabla {\mathbf {{v}}}^2 \ \mathrm{d}x = \int _{\varGamma } {\mathbf {{v}}}^1 (\nabla {\mathbf {{v}}}^2 \cdot \nu ) \ \mathrm{d}s = ( {\mathbf {{g}}}^1, \Lambda {\mathbf {{g}}}^2)_{L^2(\varGamma ;{\mathbb {R}}^d)}\).

Additionally, for Lipschitz \(\varGamma\), the inner product \((\, \cdot \,, \, \cdot \,)_{\Lambda }\) is equivalent to the natural one in \(H^{1/2}(\varGamma ;{\mathbb {R}}^d)\). Here, \(H^{1/2}(\varGamma ;{\mathbb {R}}^d)\) is viewed as the image of the trace operator \(\gamma _{\varGamma }\) on \(\varGamma\) (i.e., \({\text {Im}}(\gamma _{\varGamma }) = \gamma _{\varGamma }(H^1(\Omega ;{\mathbb {R}}^d))\)). Consequently, by Riesz representation theorem, together with the embedding \(H^{-1/2}(\varGamma ;{\mathbb {R}}^d) \supset L^2(\varGamma ;{\mathbb {R}}^d) \supset H^{1/2}(\varGamma ;{\mathbb {R}}^d)\), we conclude that \(\Lambda \in {\text {Isom}}(H^{1/2}(\varGamma ;{\mathbb {R}}^d),H^{-1/2}(\varGamma ;{\mathbb {R}}^d))\). This proves the lemma. \(\square\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunayama, Y., Kimura, M. & Rabago, J.F.T. Comoving mesh method for certain classes of moving boundary problems. Japan J. Indust. Appl. Math. 39, 973–1001 (2022). https://doi.org/10.1007/s13160-022-00524-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00524-z

Keywords

Navigation