Skip to main content

Advertisement

Log in

Numerical crack path selection problem based on energy profiles

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Given the infinite number of possible crack paths in a material, a mathematical theory to determine a crack path has not yet been established. On this occasion, we numerically find a crack path in a variational fracture framework. Based on the variational crack propagation model by Francfort and Marigo, we numerically compare elastic energy profiles along several crack paths and determine a crack path with a minimum energy profile. We consider multiple straight crack cases and kink- and circle-shaped crack paths. For these cases, we additionally employ a variational formula for the derivative of the energy profile. Furthermore, we numerically observe that our approach’s selected kink crack path exhibits good agreement with the crack propagation results in the phase field model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Armanda, I., Kimura, M., Takaishi, T., Maharani, A.U.: Numerical construction of energy-theoretic crack propagation based on a localized francfort-marigo model. Recent Dev. Comput. Sci. 6, 35–41 (2015)

    Google Scholar 

  2. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chambolle, A., Francfort, G., Marigo, J.J.: When and how do cracks propagate? J. Mech. Phys. Solids 57(9), 1614–1622 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, 2nd edn, pp. 1–35. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  5. Delfour, M.C., Zolésio, J.P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2011)

    Book  MATH  Google Scholar 

  6. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin, Heidelberg (1976)

    Book  MATH  Google Scholar 

  7. Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 221(582–593), 163–198 (1920)

    MATH  Google Scholar 

  9. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Kimura, M.: Shape derivative of minimum potential energy: abstract theory and applications. In: Jindrich Necas Center for Mathematical Modeling Lecture notes, vol. 4, pp. 1–38. matfyzpress, Prague (2008)

    Google Scholar 

  11. Kimura, M., Takaishi, T., Alfat, S., Nakano, T., Tanaka, Y.: Irreversible phase field models for crack growth in industrial applications: thermal stress, viscoelasticity, hydrogen embrittlement. SN Appl. Sci. 3(781), 1–26 (2021)

    Google Scholar 

  12. Kimura, M., Wakano, I.: Shape derivative of potential energy and energy release rate in fracture mechanics. J. Math-for-Ind. 3, 21–31 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Takaishi, T., Kimura, M.: Phase field model for mode III crack growth in two dimensional elasticity. Kybernetika 45, 605–614 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported/partially supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT) Scholarship and JSPS KAKENHI (Grant numbers JP20H01812 and JP20KK0058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahardhika Maulana Alifian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alifian, M.M., Kimura, M. & Alfat, S. Numerical crack path selection problem based on energy profiles. Japan J. Indust. Appl. Math. 39, 817–841 (2022). https://doi.org/10.1007/s13160-022-00523-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00523-0

Keywords

Mathematics Subject Classification

Navigation