Skip to main content
Log in

Time consistent mean-variance asset allocation for a DC plan with regime switching under a jump-diffusion model

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a time consistent solution for a defined contribution pension plan under a mean-variance criterion with regime switching in a jump-diffusion setup, during the accumulation phase. We consider a market consisting of a risk-free asset and a geometric jump-diffusion risky asset process. Our solution allows the fund manager to incorporate a clause which allows for the distribution of a member’s premiums to his surviving dependents, should the member die before retirement. Applying the extended Hamilton-Jacobi-Bellman (HJB) equation, we derive the explicit time consistent equilibrium strategy and the value function. We then provide some numerical simulations to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antolin, P., Pugh, C., Stewart, F.: Forms of benefit payment at retirement. OECD Working Papers on Insurance and Private Pensions, No. 26, OECD publishing, \(\copyright\) OECD. https://doi.org/10.1787/238013082545 (2008)

  2. Azevedo, N., Pinheiro, D., Weber, G.W.: Dynamic programming for a Markov-switching jump-diffusion. J. Comput. Appl. Math. 267, 1–19 (2014)

    Article  MathSciNet  Google Scholar 

  3. Battocchio, P., Menoncin, F.: Optimal pension management in a stochastic framework. Insur. Math. Econ. 34(1), 79–95 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bian, L., Li, Z., Yao, H.: Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause. Insur. Math. Econ 81, 78–94 (2018)

    Article  MathSciNet  Google Scholar 

  5. Björk, T., Murgoci, A.: A general theory of Markovian time inconsistent Stochastic control problems. (2010) Available at SSRN: https://ssrn.com/abstract=1694759 or http://dx.doi.org/10.2139/ssrn.1694759

  6. Björk, T., Murgoci, A., Zhou, X.Y.: Mean-variance portfolio optimization with state-dependent risk aversion. Math. Finance Int. J. Math. Stat. Financial Econ. 24(1), 1–24 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Chen, A., Delong, L.: Optimal investment for a defined-contribution pension scheme under a regime switching model. ASTIN Bull.: J. IAA 45(2), 397–419 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Li, Z., Zeng, Y., Sun, J.: Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk. Insur. Math. Econ. 75, 137–150 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chen, K., Chiu, M.C., Wong, H.Y.: Time-consistent mean-variance pairs-trading under regime-switching cointegration. SIAM J. Financial Math. 10(2), 632–665 (2019)

    Article  MathSciNet  Google Scholar 

  10. Chen, P., Yang, H., Yin, G.: Markowitzs mean-variance asset-liability management with regime switching: a continuous-time model. Insur. Math. Econ. 43(3), 456–465 (2008)

    Article  MathSciNet  Google Scholar 

  11. Czichowsky, C.: Time-consistent mean-variance portfolio selection in discrete and continuous time. Finance Stochastics 17(2), 227–271 (2013)

    Article  MathSciNet  Google Scholar 

  12. Devolder, P., Janssen, J., Manca, R.: Stochastic methods for pension funds. John Wiley & Sons, Hoboken (2013)

    Google Scholar 

  13. Di Giacinto, M., Federico, S., Gozzi, F.: Pension funds with a minimum guarantee: a stochastic control approach. Finance Stochastics 15(2), 297–342 (2011)

    Article  MathSciNet  Google Scholar 

  14. Emms, P.: Lifetime investment and consumption using a defined-contribution pension scheme. J. Econ. Dyn. Control 36(9), 1303–1321 (2012)

    Article  MathSciNet  Google Scholar 

  15. Federico, S.: A pension fund in the accumulation phase: a stochastic control approach. Banach Cent. Publ. Adv. Math. Finance 83, 61–83 (2008)

    Article  MathSciNet  Google Scholar 

  16. Guambe, C., Kufakunesu, R., Van Zyl, G., Beyers, C.: Optimal asset allocation for a DC plan with partial information under inflation and mortality risks. Commun. Stat. Theory Methods, 1–14 (2019)

  17. He, L., Liang, Z.: Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework. Insur. Math. Econ. 53(3), 643–649 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hu, Y., Jin, H., Zhou, X.Y.: Time-inconsistent stochastic linear—quadratic control. SIAM J. Control Optim. 50(3), 1548–1572 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hu, Y., Jin, H., Zhou, X.Y.: Time-inconsistent stochastic linear—quadratic control: characterization and uniqueness of equilibrium. SIAM J. Control Optim. 55(2), 1261–1279 (2017)

    Article  MathSciNet  Google Scholar 

  20. Li, D., Rong, X., Zhao, H.: Time-consistent investment strategy for DC pension plan with stochastic salary under CEV model. J. Syst. Sci. Complex. 29(2), 428–454 (2016)

    Article  MathSciNet  Google Scholar 

  21. Li, G., Chen, Z.P., Liu, J.: Optimal policy for a time consistent mean-variance model with regime switching. IMA J. Manage. Math. 27(2), 211–234 (2014)

    Article  MathSciNet  Google Scholar 

  22. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  23. Norris, J. R.: Markov chains. Vol. No. 2. Cambridge University Press (1998)

  24. Sun, Z., Guo, X.: Equilibrium for a time-inconsistent Stochastic linear-quadratic control system with jumps and its application to the mean-variance problem. J. Optim. Theory Appl. 181(2), 383–410 (2019)

    Article  MathSciNet  Google Scholar 

  25. Sun, J., Li, Z., Zeng, Y.: Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model. Insur. Math. Econ. 67, 158–172 (2016)

    Article  MathSciNet  Google Scholar 

  26. Sun, J., Li, Y., Zhang, L.: Robust portfolio choice for a defined contribution pension plan with stochastic income and interest rate. Commun. Stat. Theory Methods 47(17), 4106–4130 (2018)

    Article  MathSciNet  Google Scholar 

  27. Wei, J., Wong, K.C., Yam, S.C.P., Yung, S.P.: Markowitzs mean-variance asset-liability management with regime switching: a time-consistent approach. Insur. Math. Econ. 53(1), 281–291 (2013)

    Article  MathSciNet  Google Scholar 

  28. Yan, T., Wong, H.Y.: Open-loop equilibrium strategy for mean-variance portfolio problem under stochastic volatility. Automatica 107, 211–223 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to express a deep gratitude to the University of Pretoria ABSA Chair in Actuarial Science for financial support. We wish to extend our gratitude to the Editor and two anonymous reviewers, whose comments and suggestions have greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calisto Guambe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of the Theorem 3.1.


To prove the theorem, we follow [5], Theorem 7.1. We divide the proof in two parts, first we show that for the equilibrium control \(\pi ^*\in {\mathcal {A}}\), the value function \(\Psi (t,x,\ell ,z,j)=\Phi (t,x,\ell ,z,j,\pi ^*)\) and \(\psi\) and \(\varphi\) have the following probabilistic representation:

$$\begin{aligned} \psi (t,x,\ell ,z,j,j')={\mathbb {E}}_{t,x,\ell ,z,j}[F(X^{\pi ^*}(T),j)]\ \ \ \ \mathrm{and} \ \ \ \ \varphi (t,x,\ell ,z,j)={\mathbb {E}}_{t,x,\ell ,z,j}[X^{\pi ^*}(T)]\,. \end{aligned}$$

In the second part, we prove that \(\pi ^*\in {\mathcal {A}}\) is indeed the equilibrium control strategy.

Let \(h(t,x,\ell ,z,j)\in {\mathcal {C}}^{1,2,2}([0,T]\times {\mathbb {R}}^2\times {\mathcal {S}})\), then by Itô’s formula ([2], Lemma A1),

$$\begin{aligned}&h(t,X^\pi (t),\ell (t),Z(t),j) \\&= {} h(0,x,\ell ,z,j)+\int _0^t{\mathcal {L}}h(s,X^\pi (s),\ell (s),Z(s),j)ds \\&+\int _0^t\ell (s)\sigma _2\frac{\partial h}{\partial \ell }(s,X^\pi (s),\ell (s),Z(s),j)dW_1(s) \\&+\int _0^t\Bigl (\pi (s,X^\pi (s),\ell (s),Z(s),j)\sigma \frac{\partial h}{\partial x}(s,X^\pi (s),\ell (s),Z(s),j) \\&\ \ \ \ +\ell (s)\sigma _1\frac{\partial h}{\partial \ell }(s,X^\pi (s),\ell (s),Z(s),j)\Bigl )dW(s) \\&+\int _0^t\sum _{\alpha \in {\mathcal {S}},\alpha \ne j}\Bigl (h(s,X^\pi (s),\ell (s),Z(s),\alpha )-h(s,X^\pi (s),\ell (s),Z(s),j)\Bigl )d{\tilde{M}}_{j\alpha } \\&+\int _0^t\int _{{\mathbb {R}}}(h(s,X^\pi (s)+\pi (s,X^\pi (s),\ell (s),Z(s),j)\gamma _S,\ell (s),j) \\&\ \ \ \ \ \ \ \ \ \ +h(s,X^\pi (s),\ell (s)(1+\sigma _1),Z(s),j)-2h(s,X^\pi (s),\ell (s),Z(s),j)){\tilde{N}}(ds,d\zeta )\,, \end{aligned}$$

where \({\mathcal {L}}h\) is given by (2.8). Since \(W,{\tilde{M}}\) and \({\tilde{N}}\) are martingales, under the integrability condition \(h\in L^2_T(X^{\pi ^*})\), we have that

$$\begin{aligned}h(t,X^\pi (t),\ell (t),Z(s),\alpha (t))-h(0,x,\ell ,j)-\int _0^t{\mathcal {L}}^\pi h(s,X^\pi (s),\ell (s),Z(s),\alpha (s)ds\end{aligned}$$

is a martingale. Thus, for \(\Psi =h\), we have:

$$\begin{aligned}&{\mathbb {E}}_{t,x,\ell ,z,j}[\Psi (T,X(T),\ell (T),Z(T),\alpha (t)] \nonumber \\&= {} \Psi (t,x,\ell ,z,j)+{\mathbb {E}}_{t,x,\ell ,z,j}\Bigl [\int _t^T{\mathcal {L}}^{\pi ^*}\Psi (s,X^{\pi ^*}(s),\ell (s),Z(s),\alpha (t)ds\Bigl ]\,. \end{aligned}$$
(4.1)

In order to show that \(\Psi (t,x,\ell ,z,j)=\Phi (t,x,\ell ,z,j,\pi ^*)\), we use the \(\Psi\)-equation (3.1) to obtain:

$$\begin{aligned} {\mathcal {L}}^{\pi ^*}\Psi (t,x,\ell ,z,j)= & {} {\mathcal {L}}^{\pi ^*}\psi (t,x,\ell ,z,j,j')-{\mathcal {L}}^{\pi ^*}\psi ^{j'}(t,x,\ell ,z,j) \\&+{\mathcal {L}}^{\pi ^*}(\Gamma \circ \varphi )(t,x,\ell ,z,j) -{\mathcal {M}}^{\pi ^*}\varphi (t,x,\ell ,z,j)\,. \end{aligned}$$

Then, from (3.2)–(3.2), The relation (4.1) becomes:

$$\begin{aligned}&{\mathbb {E}}_{t,x,\ell ,z,j}[\Psi (T,X(T),\ell (T),Z(T),\alpha (t)] \\& \quad = {} \Psi (t,x,\ell ,z,j) +{\mathbb {E}}_{t,x,\ell ,z,j}\Bigl [ \int _t^T\Bigl ({\mathcal {L}}^{\pi ^*}\psi (s,X(s),\ell (s),Z(s),\alpha (s),j')\\&\quad +{\mathcal {L}}^{\pi ^*}(\Gamma \circ \varphi )(s,X(s),\ell (s),Z(s),\alpha (s))\Bigl )ds\Bigl ]. \end{aligned}$$

Similarly,

$$\begin{aligned}&{\mathbb {E}}_{t,x,\ell ,z,j}\Bigl [ \int _t^T{\mathcal {L}}^{\pi ^*}\psi ( s,X(s),\ell (s),Z(s),\alpha (s),j')ds\Bigl ] \\& \quad ={} {\mathbb {E}}_{t,x,\ell ,z,j}\Bigl [ \psi (T,X(T),\ell (T),Z(T),\alpha (T),j')\Bigl ] -\psi (t,x,\ell ,z,j,j') \end{aligned}$$

and

$$\begin{aligned}&{\mathbb {E}}_{t,x,\ell ,z,j}\Bigl [ \int _t^T{\mathcal {L}}^{\pi ^*}(\Gamma \circ \varphi )(s,X(s),\ell (s),Z(s),\alpha (s))ds\Bigl ]\\=\, & {} {\mathbb {E}}_{t,x,\ell ,z,j}\Bigl [ \Gamma (T,\varphi (T,X(T),\ell (T),Z(T),\alpha (T)),\alpha (t)\Bigl ] - \Gamma (t,\varphi (t,x,\ell ,z,j),j)\,. \end{aligned}$$

Then, using the above relations, the boundary conditions and (3.4), we can easily conclude that

$$\begin{aligned} \Psi (t,x,\ell ,z,j)= \,& {} \psi (t,x,\ell ,z,j,j') +\Gamma (t,\varphi (t,x,\ell ,z,j),j) \nonumber \\=\, & {} {\mathbb {E}}_{t,x,\ell ,z,j}[F(X^{\pi ^*}(T),\alpha (T)]+{\mathbb {E}}_{t,x,\ell ,z,j}[X^{\pi ^*}(T)] \nonumber \\= \,& {} \Phi (t,x,\ell ,z,j,\pi ^*)\,. \end{aligned}$$
(4.2)

In order to show that \(\pi ^*\) is indeed an equilibrium control strategy, we construct, for any \(\epsilon >0\) and \(\pi \in {\mathcal {A}}\), the control strategy \(\pi _{\epsilon }\) defined in Definition 2.2. For any \(s\in [t,t+\epsilon ]\) we have: (See Lemma 2.2, [5])

$$\begin{aligned}&\Phi (t,x,\ell ,z,j,\pi ) \nonumber \\& \quad= {} {\mathbb {E}}_{t,x,\ell ,z,j}[\Psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,\alpha )] \nonumber \\&\quad\quad-\Bigl \{{\mathbb {E}}_{t,x,\ell ,z,j}[\psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ,j')] -{\mathbb {E}}_{t,x,\ell ,z,j}[\psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ,j')]\Bigl \} \nonumber \\&-\Bigl \{{\mathbb {E}}_{t,x,\ell ,z,j}[\Gamma (t+\epsilon ,\varphi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ),\alpha )] \nonumber \\&\quad\quad -\Gamma (t+\epsilon ,{\mathbb {E}}_{t,x,\ell ,z,j}[\varphi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ),\alpha ])\Bigl \}\,. \end{aligned}$$
(4.3)

Moreover, for all \(\pi \in {\mathcal {A}}\) and (3.1), we have

$$\begin{aligned}&{\mathcal {L}}^{\pi }\Psi (t,x,\ell ,z,j)-{\mathcal {L}}^\pi \psi (t,x,\ell ,z,j,t,j)+{\mathcal {L}}^\pi \psi ^{t,j}(t,x,\ell ,z,j) -{\mathcal {L}}^\pi (\Gamma \circ \varphi )(t,x,\ell ,z,j) \\&\ \ \ \ \ \ \ + {\mathcal {M}}^\pi \varphi (t,x,\ell ,z,j)\,\le \,0\,. \end{aligned}$$

Discretizing the above expression, we have

$$\begin{aligned}&{\mathbb {E}}_{t,x,\ell ,z,j}[\Psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha )]- \Psi (t,x,\ell ,z,j) -\Bigl \{{\mathbb {E}}_{t,x,\ell ,z,j}[\psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ,j')] \\&- \psi (t,x,\ell ,z,j,j')\Bigl \} +{\mathbb {E}}_{t,x,\ell ,z,j}[\psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ,j')] - \psi (t,x,\ell ,z,j,j') \\&-{\mathbb {E}}_{t,x,\ell ,z,j}[\Gamma (t+\epsilon ,\varphi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ),\alpha )] + \Gamma (t,\varphi (t,x,\ell ,z,j),j) \\&+\Gamma (t+\epsilon ,{\mathbb {E}}_{t,x,\ell ,z,j}[\varphi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ),\alpha ])-\Gamma (t,\varphi (t,x,\ell ,z,j),j)\,\le o(\epsilon )\,. \end{aligned}$$

Hence

$$\begin{aligned}&\Psi (t,x,\ell ,z,j) \\ &\quad\ge {} {\mathbb {E}}_{t,x,\ell ,z,j}[\Psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha )] -{\mathbb {E}}_{t,x,\ell ,z,j}[\psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ,j')] \\&\quad\quad+{\mathbb {E}}_{t,x,\ell ,z,j}[\psi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ,j')] -{\mathbb {E}}_{t,x,\ell ,z,j}[\Gamma (t+\epsilon ,\varphi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ),\alpha )] \\&\quad\quad+\Gamma (t+\epsilon ,{\mathbb {E}}_{t,x,\ell ,z,j}[\varphi (t+\epsilon ,X^{\pi }_{t+\epsilon },\ell ,Z,\alpha ),\alpha ]) + o(\epsilon )\,. \end{aligned}$$

Therefore, from (4.2) and (4.3), we obtain

$$\begin{aligned}\Phi (t,x,\ell ,z,j,\pi ^*)-\Phi (t,x,\ell ,z,j,\pi _{\epsilon })\ge o(\epsilon )\,,\end{aligned}$$

that is,

$$\begin{aligned}\lim _{\epsilon \rightarrow 0}\inf \frac{\Phi (t,x,\ell ,z,j,\pi ^*)-\Phi (t,x,\ell ,z,j,\pi _{\epsilon })}{\epsilon }\ge 0\,,\end{aligned}$$

which completes the proof.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guambe, C., Kufakunesu, R., van Zyl, G. et al. Time consistent mean-variance asset allocation for a DC plan with regime switching under a jump-diffusion model. Japan J. Indust. Appl. Math. 39, 119–143 (2022). https://doi.org/10.1007/s13160-021-00481-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-021-00481-z

Keywords

Mathematics Subject Classification

Navigation