Skip to main content
Log in

Forecasting with full use of data without interpolation on logistic curve model with missing data

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a forecasting method based on a logistic curve model with missing data, which are a ubiquitous problem in social science forecasting, especially in marketing. The method completely recovers parameters of the difference equation when data are on an exact solution curve because it uses an unequal step difference equation that has an exact solution. It makes full use of data without wasting any data or generating plausible data for the missing data. It only requires regression analysis and a simple optimization technique and showed better fitting than two conventional methods for three actual datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aggrey, S.: Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poult. Sci. 81(12), 1782–1788 (2002)

    Article  Google Scholar 

  2. Allison, P.D.: Missing data. In: Marsden, P.V., Wright, J.D. (eds.) Handbook of survey research, pp. 631–657. Emerald Group Pub. Ltd. (2010)

  3. Gregg, J., Hossel, C., Richardson, J.: Mathematical trend curves: an aid to forecasting (Mathematical and statistical techniques for industry, monograph, no. 1). Published for Imperial Chemical Industries Ltd. by Oliver & Boyd (1964)

  4. Gupta, R., Jain, K.: Diffusion of mobile telephony in India: an empirical study. Technol. Forecast. Soc. Change 79(4), 709–715 (2012)

    Article  Google Scholar 

  5. Hirota, R.: Lecture on discrete equations. Saiensu-sha (2000). (in Japanese)

  6. Inoue, S., Yamada, S.: Discrete software reliability assessment with discretized NHPP models. Comput. Math. Appl. 51(2), 161–170 (2006)

    Article  MathSciNet  Google Scholar 

  7. Inoue, S., Yamada, S.: Generalized discrete software reliability modeling with effect of program size. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 37(2), 170–179 (2007)

    Article  Google Scholar 

  8. Knízetová, H., Hyánek, J., Kníze, B., Roubícek, J.: Analysis of growth curve of fowl. I. chickens. Br. Poult. Sci. 32(5), 1027–1038 (1991)

    Article  Google Scholar 

  9. Kucharavy, D., Guio, R.D.: Application of logistic growth curve. Procedia Eng. 131, 280–290 (2015)

    Article  Google Scholar 

  10. Kyurkchiev, N.: Selected Topics in Mathematical Modeling: Some New Trends: Dedicated to Academician Blagovest Sendov (1932–2020). LAP LAMBERT Academic Publishing, Riga (2020)

    Google Scholar 

  11. Lechman, E.: ICT Diffusion in Developing Countries: Towards a New Concept of Technological Takeoff. Springer, Berlin (2015)

    Book  Google Scholar 

  12. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  Google Scholar 

  13. Little, R., Rubin, D.: Statistical Analysis with Missing Data. Wiley, Hoboken (1987)

    MATH  Google Scholar 

  14. Mar-Molinero, C.: Tractors in Spain: a logistic analysis. J. Oper. Res. Soc. 31(2), 141–152 (1980)

    Article  Google Scholar 

  15. Martino, J.P.: A review of selected recent advances in technological forecasting. Technol. Forecast. Soc. Change 70(8), 719–733 (2003)

    Article  Google Scholar 

  16. Meade, N.: The use of growth curves in forecasting market development—a review and appraisal. J. Forecast. 3(4), 429–451 (1984)

    Article  Google Scholar 

  17. Morisita, M.: The fitting of the logistic equation to the rate of increase of population density. Res. Popul. Ecol. 7(1), 52–55 (1965)

    Article  Google Scholar 

  18. Narinc, D., Karaman, E., Firat, M.Z., Aksoy, T.: Comparison of non-linear growth models to describe the growth in Japanese quail. J. Anim. Vet. Adv. 9(14), 1961–1966 (2010)

    Article  Google Scholar 

  19. Okamura, H., Dohi, T.: On Kolmogorov-Smirnov test for software reliability models with grouped data. In: Proceedings 19th international conference on software quality, reliability and security (QRS2019), pp. 77–82 (2019)

  20. Pavlov, N., Iliev, A., Rahnev, A., Kyurkchiev, N.: Some Software Reliability Models: Approximation and Modeling Aspects. LAP LAMBERT Academic Publishing, Riga (2018)

    Google Scholar 

  21. Roush, W., Branton, S.: A comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poult. Sci. 84(3), 494–502 (2005)

    Article  Google Scholar 

  22. Satoh, D.: A discrete Gompertz equation and a software reliability growth model. IEICE Trans. E83D(7), 1508–1513 (2000)

    Google Scholar 

  23. Satoh, D.: A discrete Bass model and its parameter estimation. J. Oper. Res. Soc. Jpn 44(1), 1–18 (2001). https://doi.org/10.15807/jorsj.44

    Article  MathSciNet  MATH  Google Scholar 

  24. Satoh, D.: Model selection among growth curve models that have the same number of parameters. Cogent Math. Stat. 6(1660503), 1–17 (2019). https://doi.org/10.1080/25742558.2019.1660503

    Article  MATH  Google Scholar 

  25. Satoh, D.: Properties of Gompertz data revealed with non-Gompertz integrable difference equation. Cogent Math. Stat. 6(1), 1596552 (2019). https://doi.org/10.1080/25742558.2019.1596552

    Article  MathSciNet  MATH  Google Scholar 

  26. Satoh, D.: Property of logistic data exposed with Gompertz model and resistance to noise in actual data. Jpn. J. Ind. Appl. Math. 36(3), 937–957 (2019). https://doi.org/10.1007/s13160-019-00382-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Satoh, D., Matsumura, R.: Monotonic decrease of upper limit estimated using Gompertz model with data described using logistic model. Jpn. J. Ind. Appl. Math. 36(1), 79–96 (2019). https://doi.org/10.1007/s13160-018-0333-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Satoh, D., Uchida, M.: Computer worm model describing infection via e-mail. Bull. Jpn. Soc. Ind. Appl. Math. 20(3), 50–55 (2010). (in Japanese)

    Google Scholar 

  29. Satoh, D., Yamada, S.: Discrete equations and software reliability growth models. In: Proceedings of 12th International Symposium on Software Reliability Engineering, pp. 176–184. Hong Kong (2001)

  30. Satoh, D., Yamada, S.: Parameter estimation of discrete logistic curve models for software reliability assessment. Jpn. J. Ind. Appl. Math. 19(1), 39–53 (2002). https://doi.org/10.1007/BF03167447

    Article  MathSciNet  MATH  Google Scholar 

  31. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38(1/2), 196–219 (1951). https://www.jstor.org/stable/2332328?seq=1

  32. Steffensen, J.F.: Interpolation. Dover Publications, Mineola (1950)

    MATH  Google Scholar 

  33. The World Bank: Mobile cellular subscriptions per 100 people (2018). http://databank.worldbank.org/data/country/USA/556d8fa6/Popular_countries

  34. Ushiki, S.: Central difference scheme and chaos. Phys. D 4(3), 407–424 (1982)

    Article  MathSciNet  Google Scholar 

  35. Verhulst, P.F.: Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  36. Yamada, S.: Software Reliability Modeling-Fundamentals and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Satoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, D., Matsumura, R. Forecasting with full use of data without interpolation on logistic curve model with missing data. Japan J. Indust. Appl. Math. 38, 473–488 (2021). https://doi.org/10.1007/s13160-020-00452-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-020-00452-w

Keywords

Mathematics Subject Classification

Navigation