Skip to main content
Log in

Monotonic decrease of upper limit estimated with Gompertz model for data described using logistic model

  • Original Paper
  • Area 3
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The Gompertz curve and logistic curve models are often used to forecast upper limits (saturation points). To accurately estimate an upper limit, an appropriate model selection as well as accurate parameter estimation is required. We mathematically analyze how an upper limit estimated with an inappropriate model changes as the data size increases, i.e., time elapses, when the Gompertz curve model is selected for data described on the exact solution of the logistic curve model. We prove that an estimated upper limit is strictly monotonically decreasing as the historical data size increases and that the upper limit estimated with the inappropriate model converges to the upper limit estimated with the appropriate model as the data size approaches infinity. These results can help in selecting an appropriate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggrey, S.: Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poult. Sci. 81(12), 1782–1788 (2002)

    Article  Google Scholar 

  2. Bass, F.M.: A new product growth for model consumer durables. Manag. Sci. 15(5), 215–227 (1969). https://doi.org/10.1287/mnsc.15.5.215

    Article  MATH  Google Scholar 

  3. Bemmaor, A.C.: Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect Versus Consumer Heterogeneity, pp. 201–223. Kluwer, Boston (1994)

    Google Scholar 

  4. Chu, W.L., Wu, F.S., Kao, K.S., Yen, D.C.: Diffusion of mobile telephony: an empirical study in Taiwan. Telecommun. Policy 33(9), 506–520 (2009)

    Article  Google Scholar 

  5. Franses, P.H.: A method to select between Gompertz and logistic trend curves. Technol. Forecast. Soc. Change 46(1), 45–49 (1994)

    Article  Google Scholar 

  6. Gregg, J., Hossel, C., Richardson, J.: Mathematical Trend Curves, An Aid to Forecasting. ICI Monograph 1. Oliver and Boyd, Edinburgh (1964)

    Google Scholar 

  7. Guidolin, M., Guseo, R.: Technological change in the U.S. music industry: within-product, cross-product and churn effects between competing blockbusters. Technol. Forecast. Soc. Change 99(1), 35–46 (2015)

    Article  Google Scholar 

  8. Gupta, R., Jain, K.: Diffusion of mobile telephony in India: an empirical study. Technol. Forecast. Soc. Change 79(4), 709–715 (2012)

    Article  Google Scholar 

  9. Guseo, R., Guidolin, M.: Modelling a dynamic market potential: a class of automata networks for diffusion of innovations. Technol. Forecast. Soc. Change 76(6), 806–820 (2009)

    Article  Google Scholar 

  10. Guseo, R., Mortarino, C.: Modeling competition between two pharmaceutical drugs using innovation diffusion models. Ann. Appl. Stat. 9(4), 2073–2089 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirota, R.: Nonlinear partial difference equations. V. nonlinear equations reducible to linear equations. J. Phys. Soc. Jpn. 46(1), 312–319 (1979)

    Article  Google Scholar 

  12. Hirota, R.: Lecture on discrete equations. Saiensusha, Tokyo (2000) (in Japanese)

  13. Hirota, R., Takahashi, D.: Discrete and Ultradiscrete Systems. Kyoritsushuppan, Tokyo (2003) (in Japanese)

  14. Karmeshu, Goswami, D.: Stochastic evolution of innovation diffusion in heterogeneous groups: study of life cycle patterns. IMA J. Manag. Math. 12(2), 107–126 (2001). https://doi.org/10.1093/imaman/12.2.107

    Article  MATH  Google Scholar 

  15. Knízetová, H., Hyánek, J., Kníze, B., Roubícek, J.: Analysis of growth curve of fowl I. chickens. Br. Poult. Sci. 32(5), 1027–1038 (1991)

    Article  Google Scholar 

  16. Krishnan, T.V., Bass, F.M.: Impact of a late entrant on the diffusion of a new product/service. J. Mark. Res. 37(2), 269–278 (2000)

    Article  Google Scholar 

  17. Lechman, E.: ICT Diffusion in Developing Countries: Towards a New Concept of Technological Takeoff. Springer, Berlin (2015)

    Book  Google Scholar 

  18. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martino, J.P.: A review of selected recent advances in technological forecasting. Technol. Forecast. Soc. Change 70(8), 719–733 (2003)

    Article  Google Scholar 

  20. Meade, N.: The use of growth curves in forecasting market development—a review and appraisal. J. Forecast. 3(4), 429–451 (1984)

    Article  Google Scholar 

  21. Meade, N., Islam, T.: Forecasting with growth curves: an empirical comparison. Int. J. Forecast. 11(2), 199–215 (1995)

    Article  Google Scholar 

  22. Morisita, M.: The fitting of the logistic equation to the rate of increase of population density. Res. Popul. Ecol. 7(1), 52–55 (1965)

    Article  Google Scholar 

  23. Narinc, D., Karaman, E., Firat, M.Z., Aksoy, T.: Comparison of non-linear growth models to describe the growth in Japanese quail. J. Anim. Vet. Adv. 9(14), 1961–1966 (2010)

    Article  Google Scholar 

  24. Nguimkeu, P.: A simple selection test between the Gompertz and logistic growth models. Technol. Forecast. Soc. Change 88(1), 98–105 (2014)

    Article  Google Scholar 

  25. Richards, F.: A flexible growth model for empirical use. J. Exp. Bot. 10(2), 290–301 (1959). https://doi.org/10.1093/jxb/10.2.290

    Article  Google Scholar 

  26. Roush, W., Branton, S.: A comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poult. Sci. 84(3), 494–502 (2005)

    Article  Google Scholar 

  27. Satoh, D.: A discrete Gompertz equation and a software reliability growth model. IEICE Trans. E83–D(7), 1508–1513 (2000)

    Google Scholar 

  28. Satoh, D.: A discrete Bass model and its parameter estimation. J. Oper. Res. Soc. Jpn. 44(1), 1–18 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Satoh, D., Uchida, M.: Computer warm model describing infection via e-mail. Bull. Jpn. Soc. Ind. Appl. Math. 20(3), 50–55 (2010) (in Japanese)

  30. Satoh, D., Yamada, S.: Discrete equations and software reliability growth models. In: Proceedings of 12th International Symposium on Software Reliability Engineering, pp. 176–184 (2001)

  31. Satoh, D., Yamada, S.: Parameter estimation of discrete logistic curve models for software reliability assessment. Jpn. J. Ind. Appl. Math. 19(1), 39–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Savin, S., Terwiesch, C.: Optimal product launch times in a duopoly: balancing life-cycle revenues with product cost. Oper. Res. 53(1), 26–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yamada, S.: Software Reliability Modeling—Fundamentals and Applications. Springer, New York (2014)

    Book  MATH  Google Scholar 

  34. Yamada, S., Tamura, Y.: OSS Reliability Measurement and Assessment. Springer, New York (2016)

    Book  Google Scholar 

  35. Yamada, S., Inoue, S., Satoh, D.: Statistical data analysis modeling based on difference equations for software reliability assessment. Trans. Jpn. Soc. Ind. Appl. Math. 12(2), 155–168 (2002) (in Japanese)

  36. Yamakawa, P., Rees, G.H., Salas, J.M., Alva, N.: The diffusion of mobile telephones: an empirical analysis for Peru. Telecommun. Policy 37(6–7), 594–606 (2013)

    Article  Google Scholar 

  37. Young, P., Ord, J.: Model selection and estimation for technological growth curves. Int. J. Forecast. 5(4), 501–513 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for their careful reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Satoh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, D., Matsumura, R. Monotonic decrease of upper limit estimated with Gompertz model for data described using logistic model. Japan J. Indust. Appl. Math. 36, 79–96 (2019). https://doi.org/10.1007/s13160-018-0333-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0333-9

Keywords

Mathematics Subject Classification

Navigation