Skip to main content
Log in

Uniqueness of solutions to the coagulation–fragmentation equation with singular kernel

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The existence of a solution to an important singular coagulation equation with a multiple fragmentation kernel has been recently proved in Jpn J Ind Appl Math 35(3):1283–1302, 2018. This paper proves the uniqueness of the solution to the same problem in the function space \(\varOmega _{.,r_2} (T) = \bigcup _{\lambda >0 }\varOmega _{\lambda , r_2} (T)\), where \(\varOmega _{\lambda , r_2} (T)\) is the space of all continuous functions f such that

$$\begin{aligned} \Vert f\Vert _{\lambda , r_2} : = \sup \limits _{0\le t \le T} \int _0^{\infty } \left( \exp (\lambda x ) + \frac{1}{x^{r_2}}\right) |f(x,t)| dx ~<~ \infty \end{aligned}$$

and \(0< r_2 < 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Bak, T.A.: Convergence to equilibrium in a system of reacting polymers. Commun. Math. Phys. 65(3), 203–230 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banasiak, J.: On a non-uniqueness in fragmentation models. Math. Methods Appl. Sci. 25(7), 541–556 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banasiak, J., Lamb, W.: Global strict solutions to continuous coagulation-fragmentation equations with strong fragmentation. Proc. R. Soc. Edinb. Sect. A Math. 141(03), 465–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Camejo, C.C., Gröpler, R., Warnecke, G.: Regular solutions to the coagulation equations with singular kernels. Math. Methods Appl. Sci. 38(11), 2171–2184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Costa, F.P.: Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation. J. Math. Anal. Appl. 192(3), 892–914 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, A., Hounslow, M.J., Biggs, C.A.: Population balance modelling of activated sludge flocculation: investigating the size dependence of aggregation, breakage and collision efficiency. Chem. Eng. Sci. 61(1), 63–74 (2006)

    Article  Google Scholar 

  7. Dubovskiǐ, P.B., Stewart, I.W.: Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Methods Appl. Sci. 19(7), 571–591 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ernst, M.H., Ziff, R.M., Hendriks, E.M.: Coagulation processes with a phase transition. J. Colloid Interface Sci. 97(1), 266–277 (1984)

    Article  Google Scholar 

  9. Galkin, V.A., Dubovski, P.B.: Solutions of a coagulation equation with unbounded kernels. Differ. Uravn. 22(3), 504–509 (1986)

    MathSciNet  Google Scholar 

  10. Ghosh, D., Kumar, J.: Existence of mass conserving solution for the coagulation-fragmentation equation with singular kernel. Jpn. J. Ind. Appl. Math. 35(3), 1283–1302 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giri, A.K., Kumar, J., Warnecke, G.: The continuous coagulation equation with multiple fragmentation. J. Math. Anal. Appl. 374(1), 71–87 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giri, A.K., Warnecke, G.: Uniqueness for the coagulation-fragmentation equation with strong fragmentation. Z. Angew. Math. Phys. 62(6), 1047–1063 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hounslow, M.: The population balance as a tool for understanding particle rate processes. KONA Powder Part. J. 16, 179–193 (1998)

    Article  Google Scholar 

  14. Kapur, P.C.: Kinetics of granulation by non-random coalescence mechanism. Chem. Eng. Sci. 27(10), 1863–1869 (1972)

    Article  Google Scholar 

  15. Melzak, Z.A.: A scalar transport equation. Trans. Am. Math. Soc. 85(2), 547–560 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Müller, H.: Zur allgemeinen theorie ser raschen koagulation. Fortschr. Kolloide Polym. 27(6), 223–250 (1928)

    Google Scholar 

  17. Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9(1), 78–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peglow, M.: Beitrag zur modellbildung von eigenschaftsverteilten dispersen systemen am beispiel der wirbelschicht-sprühagglomeration. PhD Thesis, Otto-von-Guericke-Universität Magdeburg (2005)

  19. Shiloh, K., Sideman, S., Resnick, W.: Coalescence and break-up in dilute polydispersions. Can. J. Chem. Eng. 51(5), 542–549 (1973)

    Article  Google Scholar 

  20. Smoluchowski, M.V.: An experiment on mathematical theorization of coagulation kinetics of the colloidal solutions. Z. Phys. Chemie 92, 129–168 (1917)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdulal Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Kumar, J. Uniqueness of solutions to the coagulation–fragmentation equation with singular kernel. Japan J. Indust. Appl. Math. 37, 487–505 (2020). https://doi.org/10.1007/s13160-020-00412-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-020-00412-4

Keywords

Mathematics Subject Classification

Navigation