Skip to main content
Log in

A distributed and parallel unite and conquer method to solve sequences of non-Hermitian linear systems

  • Special Feature: Original Paper
  • International Workshop on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2018)
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Many problems in science and engineering often require to solve a long sequence of large-scale non-Hermitian linear systems with different right-hand sides (RHSs) but a unique operator. Efficiently solving such problems on extreme-scale platforms requires the minimization of global communications, reduction of synchronization and promotion of asynchronous communications. Unite and Conquer GMRES/LS-ERAM (UCGLE) method (Wu and Petiton, in Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. ACM, New York, pp 36–46, https://doi.org/10.1145/3149457.3154481, 2018) is a suitable candidate with the reduction of global communications and the synchronization points of all computing units. It consists of three computing algorithms with asynchronous communications that allow the use of approximated eigenvalues to accelerate the convergence of solving linear systems and to improve fault tolerance. In this paper, we extend both the mathematical model and the implementation of UCGLE method to adapt to solve sequences of linear systems. The eigenvalues obtained in solving previous linear systems by UCGLE can be recycled, improved on the fly and applied to construct a new initial guess vector for subsequent linear systems, which can achieve a continuous acceleration to solve linear systems in sequence. Numerical experiments using different test matrices to solve sequences of linear systems on supercomputer Tianhe-2 indicate a substantial decrease in both computation time and iteration steps when the approximated eigenvalues are recycled to generate the initial guess vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Rehim, A.M., Morgan, R.B., Wilcox, W.: Improved seed methods for symmetric positive definite linear equations with multiple right-hand sides. Numer. Linear Algebra Appl. 21(3), 453–471 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9(1), 17–29 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, A.H., Dennis, J.M., Jessup, E.R.: On improving linear solver performance: a block variant of gmres. SIAM J. Sci. Comput. 27(5), 1608–1626 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellavia, S., Morini, B.: A globally convergent Newton-GMRES subspace method for systems of nonlinear equations. SIAM J. Sci. Comput. 23(3), 940–960 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benner, P., Feng, L.: Recycling Krylov subspaces for solving linear systems with successively changing right-hand sides arising in model reduction. In: Model Reduction for Circuit Simulation, pp. 125–140. Springer, Berlin (2011)

  6. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvetti, D., Reichel, L.: Application of a block modified Chebyshev algorithm to the iterative solution of symmetric linear systems with multiple right hand side vectors. Numer. Math. 68(1), 3–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Craig, R.R., Hale, A.L.: Block-Krylov component synthesis method for structural model reduction. J. Guid. Control Dyn. 11(6), 562–570 (1988)

    Article  MATH  Google Scholar 

  9. Dongarra, J., Hittinger, J., Bell, J., Chacon, L., Falgout, R., Heroux, M., Hovland, P., Ng, E., Webster, C., Wild, S.: Applied mathematics research for exascale computing. Tech. rep., Lawrence Livermore National Laboratory (LLNL), Livermore (2014)

  10. Emad, N., Petiton, S.: Unite and conquer approach for high scale numerical computing. J. Comput. Sci. 14, 5–14 (2016)

    Article  MathSciNet  Google Scholar 

  11. Essai, A., Bergére, G., Petiton, S.G.: Heterogeneous parallel hybrid GMRES/LS-Arnoldi method. In: PPSC (1999)

  12. Flueck, A.J., Chiang, H.D.: Solving the nonlinear power flow equations with an inexact Newton method using GMRES. IEEE Trans. Power Syst. 13(2), 267–273 (1998)

    Article  Google Scholar 

  13. Gu, G.D.: A seed method for solving nonsymmetric linear systems with multiple right-hand sides. Int. J. Comput. Math. 79(3), 307–326 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gullerud, A.S., Dodds Jr., R.H.: MPI-based implementation of a PCG solver using an EBE architecture and preconditioner for implicit, 3-D finite element analysis. Comput. Struct. 79(5), 553–575 (2001)

    Article  Google Scholar 

  15. Gutknecht, M.H.: Block Krylov space methods for linear systems with multiple right-hand sides: an introduction (2006)

  16. He, H., Bergère, G., Petiton, S.: A hybrid GMRES/LS-Arnoldi method to accelerate the parallel solution of linear systems. Comput. Math. Appl. 51(11), 1647–1662 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jolivet, P., Tournier, P.H.: Block iterative methods and recycling for improved scalability of linear solvers. In: SC16-International Conference for High Performance Computing, Networking, Storage and Analysis (2016)

  18. Kershaw, D.S.: The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys. 26(1), 43–65 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kilmer, M.E., De Sturler, E.: Recycling subspace information for diffuse optical tomography. SIAM J. Sci. Comput. 27(6), 2140–2166 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Papadrakakis, M., Smerou, S.: A new implementation of the Lanczos method in linear problems. Int. J. Numer. Methods Eng. 29(1), 141–159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parks, M.L., De Sturler, E., Mackey, G., Johnson, D.D., Maiti, S.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28(5), 1651–1674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saad, Y.: Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems. SIAM J. Numer. Anal. 24(1), 155–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saad, Y.: On the Lanczos method for solving symmetric linear systems with several right-hand sides. Math. Comput. 48(178), 651–662 (1987)

    MATH  Google Scholar 

  25. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, Revised edn. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  26. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simoncini, V., Gallopoulos, E.: An iterative method for nonsymmetric systems with multiple right-hand sides. SIAM J. Sci. Comput. 16(4), 917–933 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Smith, C.F., Peterson, A.F., Mittra, R.: A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields. IEEE Trans. Antennas Propag. 37(11), 1490–1493 (1989)

    Article  Google Scholar 

  29. Wu, X.: SMG2S Manual v1.0. Technical report, Maison de la Simulation (2018)

  30. Wu, X., Petiton, S.G.: A distributed and parallel asynchronous unite and conquer method to solve large scale non-Hermitian linear systems. In: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. ACM, New York, pp. 36–46 (2018). https://doi.org/10.1145/3149457.3154481

  31. Wu, X., Petiton, S.G., Lu, Y.: A parallel generator of non-Hermitian matrices computed from given spectra. In: International Conference on Vector and Parallel Processing, pp. 215–229. Springer, Berlin (2018)

  32. Ye, Z., Zhu, Z., Phillips, J.R.: Generalized Krylov recycling methods for solution of multiple related linear equation systems in electromagnetic analysis. In: Proceedings of the 45th Annual Design Automation Conference. ACM, pp. 682–687 (2008)

  33. Zhang, Y., Bergere, G., Petiton, S.: Large scale parallel hybrid GMRES method for the linear system on grid system. In: International Symposium on Parallel and Distributed Computing, 2008. ISPDC’08. IEEE, pp. 244–249 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhe Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is funded by the project MYX of French National Research Agency (ANR) (Grant no. ANR-15-SPPE-003) under the SPPEXA framework.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Petiton, S.G. A distributed and parallel unite and conquer method to solve sequences of non-Hermitian linear systems. Japan J. Indust. Appl. Math. 36, 663–684 (2019). https://doi.org/10.1007/s13160-019-00359-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00359-1

Keywords

Mathematics Subject Classification

Navigation