Skip to main content
Log in

Empirical evaluated SDE modelling for dimensionality-reduced systems and its predictability estimates

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper develops and validates a method of empirical modelling for a dimensionality-reduced system of a nonlinear dynamical system based on the framework of the stochastic differential equation (SDE). Following the mathematical theorem corresponding to some inverse problem of the probability theory, we derive the empirically evaluating formulae for the drift vector and diffusion matrix. Focusing on a low-dimensional dynamical system of the Lorenz system, we empirically reconstruct an SDE that approximates the original time-series on the projected 2-dimensional plane. The distribution of the ensemble variance of solutions generated by the numerical SDE well agrees with that of the trajectories of the projected time-series, which indicates the ability of the SDE modelling to represent local predictability. Moreover, we also compare our SDE constructing method with the conventional Mori–Zwanzig projected operator method, which is used to derive a generalised Langevin equation for dimensionality-reduced systems, to assess the applicability of the obtained SDE model derived by the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Berner, J.: Nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci. 62, 2098–2117 (2005)

    Article  MathSciNet  Google Scholar 

  2. Branstator, G., Berner, J.: Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: phase space tendencies. J. Atmos. Sci. 62, 1792–1811 (2005)

    Article  MathSciNet  Google Scholar 

  3. DelSole, T.: A simple model for transient eddy momentum fluxes in the upper troposphere. J. Atmos. Sci. 58, 3019–3035 (2001)

    Article  MathSciNet  Google Scholar 

  4. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn, p. 402. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  5. Inatsu, M., Nakano, N., Mukougawa, H.: Dynamics and practical predictability of extratropical wintertime low-frequency variability in a low-dimensional system. J. Atmos. Sci. 70, 939–952 (2013)

    Article  Google Scholar 

  6. Inatsu, M., Nakano, N., Kusuoka, S., Mukougawa, H.: Predictability of wintertime stratospheric circulation examined using a nonstationary fluctuation-dissipation relation. J. Atmos. Sci. 72, 774–786 (2015)

    Article  Google Scholar 

  7. Just, W., Kantz, H., Rödenbeck, C., Helm, M.: Stochastic modelling: replacing fast degrees of freedom by noise. J. Phys. A Math. Gen. 34, 3199–3213 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Just, W., Gelfert, K., Baba, N., Riegert, A., Kantz, H.: Elimination of fast chaotic degrees of freedom: on the accuracy of the born approximation. J. Stat. Phys. 112, 277–292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kantz, H., Just, W., Baba, N., Gelfert, K., Riegert, A.: Fast chaos versus white noise: entropy analysis and a Fokker–Planck model for the slow dynamics. Physica D 187, 200–213 (2004)

    Article  MATH  Google Scholar 

  10. Kitahara, Y., Okamura, M.: Mean solutions for the Kuramoto–Sivashinsky equation with incoming boundary conditions. Phys. Rev. E 70, 056210 (2004)

    Article  Google Scholar 

  11. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 312–333 (1965)

    Google Scholar 

  12. McLeish, D.L.: Dependent central limit theorems and invariance principles. Ann. Probab. 2, 620–628 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33, 423–455 (1965)

    Article  MATH  Google Scholar 

  14. Mukougawa, H., Kimoto, M., Yoden, S.: J. Atmos. Sci. 48, 1231–1237 (1991)

    Article  Google Scholar 

  15. Nakano, N., Inatsu, M., Kusuoka, S., Saiki, Y.: Time-series analysis and predictability estimates by empirical SDE modelling. In: Proceedings of the 47th ISCIE International Symposium on Stochastic Systems Theory and Its Application 2016, pp 332–339 (2016)

  16. Nese, J.M.: Quantifying local predictability in phase space. Physica D 35, 237–250 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Penland, C.: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Weather Rev. 117, 2165–2185 (1989)

    Article  Google Scholar 

  18. Penland, C., Sardeshmukh, P.D.: The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8, 1999–2024 (1995)

    Article  Google Scholar 

  19. Peters, J.M., Kravtsov, S., Schwartz, N.T.: Predictability associated with nonlinear regimes in an atmospheric model. J. Atmos. Sci. 69, 1137–1154 (2012)

    Article  Google Scholar 

  20. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications, p. 472. Springer, Berlin (1984)

    MATH  Google Scholar 

  21. Sato, K., Okamura, M.: Evaluation of mean values for a forced pendulum with a projection operator method. Prog. Theor. Phys. 108, 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Siegert, S., Friedrich, R., Peinke, J.: Analysis of data sets of stochastic systems. Phys. Lett. A 243, 275–280 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stemler, T., Werner, J.P., Benner, H., Just, W.: Stochastic modeling of experimental chaotic time series. Phys. Rev. Lett. 98, 044102 (2007)

    Article  Google Scholar 

  24. Stemler, T., Werner, J.P., Benner, H., Just, W.: Stochastic modelling of intermittency. Phil. Trans. R. Soc. A 368, 273–284 (2010)

    Article  MATH  Google Scholar 

  25. Sura, P., Barsugli, J.: A note on estimating drift and diffusion parameters from timeseries. Phys. Lett. A 305, 304–311 (2002)

    Article  MATH  Google Scholar 

  26. Sura, P., Newman, M., Penland, C., Sardeshmukh, P.D.: Multiplicative noise and non-gaussianity: a paradigm for atmospheric regimes? J. Atmos. Sci. 62, 1391–1409 (2005)

    Article  Google Scholar 

  27. Wayland, R., Bromley, D., Pickett, D.: Recognizing determinism in a time series. Phys. Rev. Lett. 70, 580–582 (1993)

    Article  Google Scholar 

  28. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9, 215–220 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Takashi Sakajo for giving us insightful comments for the draft of the paper. This study was supported by PRESTO of Japan Science and Technology Agency (JST) Grant JPMJPR14E7 and JPMJPR16E5, and also partly supported by Grants-in-Aid for Scientific Research 25610028, 26310201 and 17K05360 of the Ministry of Education, Culture, Sports, Science, and Technology of Japan. This research partly used computational resources under Collaborative Research Program for Young Scientists provided by Academic Center for Computing and Media Studies, Kyoto University and the MEXT Joint Usage / Research Center “Center for Mathematical Modeling and Applications”, Meiji University, Meiji Institute for Advanced Study of Mathematical Sciences (MIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Nakano.

Appendix: A Error estimates for the evaluating formulae for the coefficients

Appendix: A Error estimates for the evaluating formulae for the coefficients

1.1 A.1 Geometric Brownian motion

Here, we consider the error estimates of the geometric Brownian motion

$$\begin{aligned} \mathrm dX_t = \alpha X_t \mathrm dt + \beta X_t \mathrm dW_t, \quad X_0=x. \end{aligned}$$
(39)

Here, \(\alpha \) and \(\beta \) are constants, \(W_t\) is the 1-dimensional Wiener process and x is the initial condition.

As shown in Sect. 2.2, a solution of (39) is given by

$$\begin{aligned} X_t = x \exp \left( \left( \alpha -\frac{\beta ^2}{2}\right) t +\beta W_t\right) . \end{aligned}$$

It is well-known that

$$\begin{aligned} {\mathrm E}_{{\varvec{x}}}[ \exp \left( \gamma t +\beta W_t\right) ]=\exp \left( \left( \gamma +\frac{\beta ^2}{2}\right) t\right) \end{aligned}$$

for constant \(\gamma \), therefore \(X_t\) satisfies

$$\begin{aligned} \frac{{\mathrm E}_{{\varvec{x}}}[ X_t-x ]}{t} = \frac{x (\exp ( \alpha t ) - 1 )}{t} =\alpha x\cdot \frac{\exp ( \alpha t ) - 1 }{\alpha t} =\alpha x+O(t). \end{aligned}$$
(40)

This implies the result given in (9).

Similarly, one can calculate the second order variation as follows.

$$\begin{aligned}&\frac{{\mathrm E}_{{\varvec{x}}}[ (X_t-x)^2 ]}{2t} = \frac{ x^2\{\exp ((2\alpha +\beta ^2)t) -2\exp ( \alpha t ) + 1 \}}{2t} \nonumber \\&\phantom {\frac{{\mathrm E}_{{\varvec{x}}}[ (X_t-x)^2 ]}{2t} } = \frac{ x^2\{\exp ((2\alpha \!+\!\beta ^2)t) \!-\! \exp ( 2\alpha t ) \}}{2t} \!+\! \frac{ x^2\{\exp (2\alpha t)\! -\!2\exp ( \alpha t )\! +\! 1 \}}{2t} \nonumber \\&\phantom {\frac{{\mathrm E}_{{\varvec{x}}}[ (X_t-x)^2 ]}{2t} } = \frac{(\beta x)^2}{2}\cdot \frac{\exp (2\alpha t) (\exp (\beta ^2t) -1)}{\beta ^2t} + \frac{ {\mathrm E}_{{\varvec{x}}}[ X_t-x ]^2}{2t} \nonumber \\&\phantom {\frac{{\mathrm E}_{{\varvec{x}}}[ (X_t-x)^2 ]}{2t} } = \frac{(\beta x)^2}{2} + \frac{t}{2}\cdot \left( \frac{ {\mathrm E}_{{\varvec{x}}}[ X_t-x ]}{t} \right) ^2 + O(t). \end{aligned}$$
(41)

Therefore the variance form

$$\begin{aligned}&\frac{{\mathrm E}_{{\varvec{x}}}[ (X_t-x)^2 ] \!-\! {\mathrm E}_{{\varvec{x}}}[ X_t\!-\!x ]^2}{2t} = \frac{(\beta x)^2}{2}\cdot \frac{ \exp (2\alpha t) (\exp (\beta ^2t) \!-\!1 )}{\beta ^2t} = \frac{(\beta x)^2}{2}\! +\! O(t) \nonumber \\ \end{aligned}$$
(42)

leads better estimate than (41). It supports the covariance form (5) for the estimate of the diffusion matrix instead of the moment form (6).

1.2 A.2 General cases

Here we calculate the error estimate of the approximation formulae given in (12) and (13) in Sec. 2.2. Let us consider an SDE in a general case

$$\begin{aligned} \mathrm d{\varvec{X}}_t = {\varvec{A}}({\varvec{X}}_t) \mathrm dt + \mathbb {S}({\varvec{X}}_t) \mathrm d{\varvec{W}}_t. \end{aligned}$$
(43)

Similarly to the error estimates (40) and (42), we can calculate the error estimates analytically for the drift vector and the diffusion matrix of (43) in a general case. For the estimate of the drift vector, the solution of (43) satisfies

$$\begin{aligned} {\mathrm E}_{{\varvec{x}}}[X^i_t - x^i ] = \int _0^t {\mathrm E}_{{\varvec{x}}}[A^i({\varvec{X}}_s)]\mathrm ds, \end{aligned}$$
(44)

therefore we obtain

$$\begin{aligned} \frac{{\mathrm E}_{{\varvec{x}}}[X^i_t - x^i ]}{t} = \frac{1}{t}\int _0^t {\mathrm E}_{{\varvec{x}}}[A^i({\varvec{X}}_s)]\mathrm ds = A^i({\varvec{x}}) + \frac{1}{t}\int _0^t ( {\mathrm E}_{{\varvec{x}}}[A^i({\varvec{X}}_s)] - A^i({\varvec{x}}) )\mathrm ds. \end{aligned}$$
(45)

For the estimate of the second term of the right-hand side of (45), Itô’s formula derives that

$$\begin{aligned} \left| A^i({\varvec{x}}) - {\mathrm E}_{{\varvec{x}}} [A^i({\varvec{X}}_s)] \right| \le \left( \sum _{k=1}^N \left\| \partial _k A^i\right\| _{\infty } \left\| A^k\right\| _{\infty } + \frac{1}{2} \sum _{k,l=1}^N \left\| \partial _k \partial _l A^i\right\| _{\infty } \left\| B^{kl}\right\| _{\infty } \right) \cdot s, \end{aligned}$$
(46)

where \(\left\| \cdot \right\| _{\infty }\) and \(\partial _k\) denote the \(L^{\infty }\) norm and the derivative with respect to \(x^k\), respectively. Consequently, from (45) we obtain the error estimate for the drift vector as follows.

$$\begin{aligned} \frac{{\mathrm E}_{{\varvec{x}}}[X^i_t - x^i ]}{t} = A^i({\varvec{x}}) + O(t). \end{aligned}$$
(47)

This results supports (12) in Sect. 2.2.

For the estimate of the diffusion matrix, from Itô’s formula, the expectation of the second order variation becomes

$$\begin{aligned}&\phantom {=} {\mathrm E}_{{\varvec{x}}}\left[ (X^i_\tau -x^i)(X^j_\tau -x^j) \right] \nonumber \\&=2\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ B^{ij}({\varvec{X}}_s)]\mathrm ds +\int _0^\tau {\mathrm E}_{{\varvec{x}}} \left[ (X^i_s-x^i) A^j({\varvec{X}}_s) + A^i({\varvec{X}}_s) (X^j_s-x^j) \right] \mathrm ds. \nonumber \\ \end{aligned}$$
(48)

By using (44) and Leibnitz’s rule, the second term in the right-hand side in (48) holds that

$$\begin{aligned}&\phantom {=} \int _0^\tau {\mathrm E}_{{\varvec{x}}} [ (X^i_s-x^i) A^j({\varvec{X}}_s) + A^i({\varvec{X}}_s) (X^j_s-x^j) ] \mathrm ds - E_{{\varvec{x}}} [ X^i_\tau -x^i ] E_{{\varvec{x}}} [ X^j_\tau -x^j ] \nonumber \\&\quad =\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ (X^i_s-x^i) A^j({\varvec{X}}_s) + A^i({\varvec{X}}_s) (X^j_s-x^j) ] \mathrm ds \nonumber \\&\qquad \phantom {=} - \int _0^\tau ( {\mathrm E}_{{\varvec{x}}} [ X^i_s-x^i ] {\mathrm E}_{{\varvec{x}}} [ A^j({\varvec{X}}_s) ] + {\mathrm E}_{{\varvec{x}}} [ A^i({\varvec{X}}_s) ] {\mathrm E}_{{\varvec{x}}} [ X^j_s-x^j ] ) \mathrm ds \nonumber \\&\quad =\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ (X^i_s-x^i) (A^j({\varvec{X}}_s) -A^j({\varvec{x}}) ) + (A^i({\varvec{X}}_s) -A^i({\varvec{x}}) ) (X^j_s-x^j) ] \mathrm ds \nonumber \\&\quad \phantom {=} +\!\!\int _0^\tau \!( {\mathrm E}_{{\varvec{x}}} [ X^i_s-x^i ] {\mathrm E}_{{\varvec{x}}} [ A^j({\varvec{x}}) \!-\! A^j({\varvec{X}}_s)]\! +\! {\mathrm E}_{{\varvec{x}}} [ A^i({\varvec{x}})\! -\! A^i({\varvec{X}}_s)] {\mathrm E}_{{\varvec{x}}} [ X^j_s\!-\!x^j ] ) \mathrm ds.\nonumber \\ \end{aligned}$$
(49)

The estimates of the difference of the drift vector (46) and that of the state

$$\begin{aligned} \left| {\mathrm E}_{{\varvec{x}}} [ X^i_s-x^i ]\right| \le s\left\| A^i\right\| _{\infty }, \end{aligned}$$

which is derived from (44), imply that the third and the fourth terms of the right-hand side in (49) become

$$\begin{aligned}&\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ X^i_s-x^i ] ( A^j({\varvec{x}}) - {\mathrm E}_{{\varvec{x}}} [A^j({\varvec{X}}_s)] ) \mathrm ds \\&\quad + \int _0^\tau ( A^i({\varvec{x}}) - {\mathrm E}_{{\varvec{x}}} [A^i({\varvec{X}}_s)] ) {\mathrm E}_{{\varvec{x}}} [ X^j_s-x^j ] \mathrm ds =O(\tau ^3). \end{aligned}$$

Hence, this result and (48) derive that

$$\begin{aligned}&{\mathrm E}_{{\varvec{x}}} [ (X^i_\tau -x^i)(X^j_\tau -x^j) ] - E_{{\varvec{x}}} [ X^i_s-x^i ] E_{{\varvec{x}}} [ X^j_s-x^j ] \nonumber \\&\quad =2\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ B^{ij}({\varvec{X}}_s)]\mathrm ds +\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ (X^i_s-x^i) (A^j({\varvec{X}}_s) -A^j({\varvec{x}}) )] \mathrm ds \nonumber \\&\qquad \phantom {=} +\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ (A^i({\varvec{X}}_s) -A^i({\varvec{x}}) ) (X^j_s-x^j) ] \mathrm ds +O(\tau ^3). \end{aligned}$$
(50)

Using Itô’s formula again, the integrand of the second term of the right-hand side in (50) takes the following forms

$$\begin{aligned}&\phantom {=} {\mathrm E}_{{\varvec{x}}} [ (X^i_s-x^i) (A^j({\varvec{X}}_s) -A^j({\varvec{x}}) ) ] \nonumber \\&\quad = \int _0^s {\mathrm E}_{{\varvec{x}}} [ A^i({\varvec{X}}_u) (A^j({\varvec{X}}_u)-A^j({\varvec{x}})) ] \mathrm du \nonumber \\&\qquad + \sum _{k=1}^N \int _0^s {\mathrm E}_{{\varvec{x}}} [ (X^i_u-x^i) (\partial _k A^j) ({\varvec{X}}_u) A^k({\varvec{X}}_u) ] \mathrm du \nonumber \\&\qquad + \frac{1}{2} \sum _{k=1}^N \int _0^s {\mathrm E}_{{\varvec{x}}} [ (\partial _k A^j) ({\varvec{X}}_u) B^{ik}({\varvec{X}}_u) ] \mathrm du \nonumber \\&\qquad + \frac{1}{2} \sum _{k,l=1}^N \int _0^s {\mathrm E}_{{\varvec{x}}} [ (X^i_u-x^i) (\partial _k \partial _l A^j) ({\varvec{X}}_u) B^{kl}({\varvec{X}}_u) ] \mathrm du \nonumber \\&\quad = \int _0^s {\mathrm E}_{{\varvec{x}}} [ A^i({\varvec{X}}_u) (A^j({\varvec{X}}_u)-A^j({\varvec{x}})) ] \mathrm du \nonumber \\&\qquad + \sum _{k=1}^N \int _0^s {\mathrm E}_{{\varvec{x}}} [ (X^i_u-x^i) (\partial _k A^j) ({\varvec{X}}_u) A^k({\varvec{X}}_u) ] \!\!\mathrm du \nonumber \\&\quad \phantom {=} + \frac{1}{2} \sum _{k=1}^N \int _0^s ( {\mathrm E}_{{\varvec{x}}} [ (\partial _k A^j) ({\varvec{X}}_u) B^{ik}({\varvec{X}}_u) ] -(\partial _k A^j)({\varvec{x}}) B^{ik}({\varvec{x}}) )\mathrm du \nonumber \\&\quad \phantom {=} + \frac{1}{2} \sum _{k,l=1}^N \int _0^s {\mathrm E}_{{\varvec{x}}} [ (X^i_u-x^i) (\partial _k \partial _l A^j) ({\varvec{X}}_u) B^{kl}({\varvec{X}}_u) ] \mathrm du \nonumber \\&\qquad + \frac{1}{2} \sum _{k=1}^N (\partial _k A^j) ({\varvec{x}}) B^{ik}({\varvec{x}})\cdot s. \end{aligned}$$
(51)

By virtue of the similar estimates to (46) calculated from Itô’s formula, the integrands of the right-hand side in (53) satisfy the following estimates:

$$\begin{aligned} \left\{ \begin{array}{l} \left| {\mathrm E}_{{\varvec{x}}} [ A^i({\varvec{X}}_u) (A^j({\varvec{X}}_u)-A^j({\varvec{x}})) ] \right| \le C_1 u,\\ \left| {\mathrm E}_{{\varvec{x}}} [ (X^i_u-x^i) (\partial _k A^j) ({\varvec{X}}_u) A^k({\varvec{X}}_u) ] \right| \le C_2 u, \\ \left| {\mathrm E}_{{\varvec{x}}} [ (\partial _k A^j) ({\varvec{X}}_u) B^{ik}({\varvec{X}}_u) ] -(\partial _k A^j) ({\varvec{x}}) B^{ik}({\varvec{x}}) \right| \le C_3 u, \\ \left| {\mathrm E}_{{\varvec{x}}} [ (X^i_u-x^i) (\partial _k \partial _l A^j) ({\varvec{X}}_u) B^{kl}({\varvec{X}}_u) ] \right| \le C_4 u, \end{array} \right. \end{aligned}$$
(52)

where \(C_1\), \(C_2\), \(C_3\) and \(C_4\) are constants depending on the \(L^\infty \) norms of the components of \({\varvec{A}}\) and \(\mathbb {B}\) and their derivatives of order up to 4. From these estimates, (53) becomes

$$\begin{aligned} {\mathrm E}_{{\varvec{x}}} \left[ (X^i_s-x^i) (A^j({\varvec{X}}_s) -A^j({\varvec{x}}) ) \right] \mathrm ds =\frac{1}{2} \sum _{k=1}^N (\partial _k A^j) ({\varvec{x}}) B^{ik}({\varvec{x}})\cdot s + O(s^2). \end{aligned}$$

Applying the similar estimates carried out above to the integrand of the third term of the right-hand side in (50), we consequently obtain

$$\begin{aligned}&{\mathrm E}_{{\varvec{x}}}\left[ (X^i_\tau -x^i)(X^j_\tau -x^j) \right] - E_{{\varvec{x}}} [ X^i_\tau -x^i ] E_{{\varvec{x}}} [ X^j_\tau -x^j ]\\&\quad =2\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ B^{ij}({\varvec{X}}_s)]\mathrm ds +\frac{1}{4} \sum _{k=1}^N \left( (\partial _k A^j) ({\varvec{x}}) B^{ik}({\varvec{x}}) +(\partial _k A^i) ({\varvec{x}}) B^{jk}({\varvec{x}})\right) \tau ^2 \\&\qquad +O(\tau ^3). \end{aligned}$$

Hence, the approximation error of \(\mathbb {B}\) can be estimated as follows.

$$\begin{aligned}&\frac{{\mathrm E}_{{\varvec{x}}}\left[ (X^i_\tau -x^i)(X^j_\tau -x^j) \right] - {\mathrm E}_{{\varvec{x}}}\left[ X^i_\tau -x^i \right] {\mathrm E}_{{\varvec{x}}}\left[ X^j_\tau -x^j\right] }{2\tau } - B^{ij}({\varvec{x}}) \nonumber \\&\quad =\frac{1}{\tau }\int _0^\tau {\mathrm E}_{{\varvec{x}}} [ B^{ij}({\varvec{X}}_s) - B^{ij}({\varvec{x}}) ] \mathrm ds \nonumber \\&\qquad +\frac{1}{8} \sum _{k=1}^N \left( (\partial _k A^j) ({\varvec{x}}) B^{ik}({\varvec{x}}) +(\partial _k A^i) ({\varvec{x}}) B^{jk}({\varvec{x}})\right) \tau +O(\tau ^2). \end{aligned}$$
(53)

This leads the error estimate (13) in Sect. 2.2.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, N., Inatsu, M., Kusuoka, S. et al. Empirical evaluated SDE modelling for dimensionality-reduced systems and its predictability estimates. Japan J. Indust. Appl. Math. 35, 553–589 (2018). https://doi.org/10.1007/s13160-017-0296-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0296-2

Keywords

Mathematics Subject Classification

Navigation