Skip to main content
Log in

Dual-curve Hull–White interest rate model with stochastic volatility

  • Original Paper
  • Area 4
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The sub-prime mortgage crisis of 2008 had a great effect on the financial market; it led to new market features and regulations. In particular, the dual curve feature has appeared in the over-the-counter market. As a result, the yield curve for computing forward values and the yield curve for discounting are no longer the same due to counterparty default risk. In addition, deleveraging regulation encourages financial institutions to invest in widely known simple products, typically at a single short rate. The classical Hull–White model, which is typically useful for simple interest rate products, is inadequate for the dual-curve situation. This study extends the Hull–White model with stochastic volatility to the dual-curve economy. Analytical solutions are derived for vanilla securities such as risk bearing zero bonds, bond options, and caplets. Our formulas facilitate the calibration of parameters by simultaneously fitting to the dual curves and the implied volatility surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Mercurio [13] and Bloomberg)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems Theory. Birkhuser, Basel (2003)

    Book  MATH  Google Scholar 

  2. Bianchetti, M.: Two Curves, One Price: Pricing & Hedging Interest Rate Derivatives Using Different Yield Curves for Discounting and Forwarding. SSRN Working Paper Series [1556–5068] (2008)

  3. Boenkost, W., Schmidt, W.M.: Cross Currency Swap Valuation. CPQF Working Paper Series, No. 2 (2004). https://www.econstor.eu/bitstream/10419/40176/1/481304045.pdf. Accessed 10 July 2017

  4. Brigo, D., Mercurio, F.: Interest Rate Models Theory and Practice. Springer Finance, Berlin, New York (2001)

    Book  MATH  Google Scholar 

  5. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Financ. 2, 61–73 (1999)

    Article  Google Scholar 

  6. Christoffersen, P., Heston, S., Jacobs, K.: The shape and term structure of the index option Smirk: why multifactor stochastic volatility models work so well. Manag. Sci. 55(12), 1914–1932 (2009)

    Article  MATH  Google Scholar 

  7. Ding, W., Domac, I., Ferri, G.: Is there a credit crunch in East Asia? APJEB 2(2), 4–32 (1998)

    Google Scholar 

  8. Fruchard, E., Zammouri, C., Willems, E.: Basis for change. Risk 8, 70–75 (1995)

    Google Scholar 

  9. Henrard, M.: The irony in the derivatives discounting. IDEAS Working Paper Series from RePEc (2007). SRN: http://ssrn.com/abstract=970509. Accessed 10 July 2017

  10. Henrard, M.: The irony in the derivatives part II: the crisis. Wilmott J. 2(6), 301–316 (2010). SSRN: http://ssrn.com/abstract=1433022. Accessed 10 July 2017

  11. Kijima, M., Tanaka, K., Wong, T.: A multi-quality model of interest rates. Quant. Financ. 9(2), 133–145 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lewis, A.: A simple option formula for general jump-diffusion and other exponential levy processes. Envision Financial Systems and OptionCity.net, California (2001). http://optioncity.net/pubs/ExpLevy.pdf. Accessed 10 July 2017

  13. Mercurio, F.: Interest rates and the credit crunch: new formulas and market models. Bloomberg Portfolio Research Paper No. 2010-01-FRONTIERS (2009). SSRN: http://ssrn.com/abstract=1332205. Accessed 10 July 2017

  14. Morini, M.: Solving the Puzzle in the Interest Rate Market. SSRN Working Paper Series (2009)

  15. Morini, M., Prampolini, A.: Risky funding: a unified framework for counterparty and liquidity charges. SSRN Working Paper Series (2010)

  16. Pallavicini, A., Tarenghi, M.: Interest-rate modeling with multiple yield curves (2009). SSRN: http://ssrn.com/abstract=1629688. Accessed 10 July 2017

Download references

Acknowledgements

We thank careful reading and comments from two anonymous referees. M. C. Chiu acknowledges the financial support by Research Grants Council of Hong Kong with project number ECS809913.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi Ying Wong.

Appendices

Appendix A. Proof of Proposition 2.1

Given \(\alpha _r(t)\) is deterministic,

$$\begin{aligned} P_D(t,T)&=\mathbb {E}^{\mathbb {Q}}\left[ \left. e^{-\int _{t}^{T}r(s)ds} \right| \mathcal {F}_t\right] = \mathbb {E}^{\mathbb {Q}}\left[ \left. e^{-\int _{t}^{T}\left[ \alpha _r(s)+\zeta _r(s)\right] ds} \right| \mathcal {F}_t\right] \\&= e^{-\int _{t}^{T}\alpha _r(s)ds}\mathbb {E}^{\mathbb {Q}}\left[ \left. e^{-\int _{t}^{T}\zeta _r(s)ds} \right| \mathcal {F}_t\right] = e^{-\int _{t}^{T}\alpha _r(s)ds}P_{\zeta _r}(t,T). \end{aligned}$$

By Feynman-Kac Formula, \(P_{\zeta _r}(t,T)\) satisfies the following PDE:

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\partial P_{\zeta _r}}{\partial t}+\sum _{i=1}^{4}\mu _{x_i}^{\mathbb {Q}}\frac{\partial P_{\zeta _r}}{\partial x_i}+\frac{1}{2}\sum _{i,j=1}^{4}\left[ \left( CV_tR\right) \left( CV_tR\right) ^\mathbb {T}\right] _{i,j}\frac{\partial ^2 P_{\zeta _r}}{\partial x_i x_j}-\zeta _r(t)P_{\zeta _r}= 0,\\&\hbox {(Terminal condition)}\quad P_{\zeta _r}\left( T,T;\zeta _r(T),\zeta _x(T),v_1(T),v_2(T)\right) = 1, \end{aligned}\right. \nonumber \\ \end{aligned}$$
(A.1)

where \(x_1:=\zeta _r\), \(x_2:=\zeta _x\), \(x_3:=v_1\) and \(x_4:=v_2\).

We propose

$$\begin{aligned} P_{\zeta _r}(t,T)=e^{A_r(t,T)\zeta _r(t)+B_r(t,T)\zeta _x(t)+C_r(t,T)v_1(t)+D_r(t,T)v_2(t)+E_r(t,T)}. \end{aligned}$$
(A.2)

Under this affine proposition of \(P_{\zeta _r}(t,T)\), all of the partial derivatives could be obtained and substituted into (A.1). As (A.1) is true for all r(t), x(t), \(v_1(t)\), and \(v_2(t)\), the coefficients of these four stochastic random variables are zero over time, which yields \(B_r(s,T)\equiv 0\), \(D_r(s,T)\equiv 0\) for all \(0\le s \le T\), and (3). \(\square \)

Appendix B. Proof of Lemma 2.1

By Ito’s Lemma,

$$\begin{aligned}&dP_D(t,T)\nonumber \\&\quad = \frac{\partial P_D}{\partial t}\,dt+\sum _{i=1}^{4}\frac{\partial P_D}{\partial x_i}\mu _{x_i}\,dt+\frac{1}{2}\sum _{i,j=1}^{4}\frac{\partial ^2 P_D}{\partial x_ix_j}\left[ (CV_tR)(CV_tR)^\mathbb {T}\right] \,dt \end{aligned}$$
(B.1)
$$\begin{aligned}&\qquad +\sum _{i=1}^{4}\frac{\partial P_D}{\partial x_i}\sigma _{x_i}\,d\vec {W}_{x_i} \nonumber \\&\quad = r(t)P_D(t,T)\,dt+\vec {\sigma _D}(t,T)\,d\vec {W}^{\mathbb {Q}}, \end{aligned}$$
(B.2)

where \(x_1:=r\), \(x_2:=x\), \(x_3:=v_1\), \(x_4:=v_2\) and

$$\begin{aligned} \vec {\sigma _D}(t,T)&= \begin{bmatrix} A_r(t,T)&B_r(t,T)&C_r(t,T)&D_r(t,T)\end{bmatrix}CV_tR \\&= \begin{bmatrix} \sigma _{D,1}(t,T)\sqrt{v_1(t)} \\ \sigma _{D,2}(t,T)\sqrt{v_2(t)} \\ \sigma _{D,3}(t,T)\sqrt{v_1(t)} \\ \sigma _{D,4}(t,T)\sqrt{v_2(t)}. \nonumber \end{bmatrix}^T \end{aligned}$$
(B.3)

Here, \( \sigma _{D,i}\) is the coefficient of the volatilities in the ith element of

$$\begin{aligned} \begin{bmatrix} A_r(t,T)&B_r(t,T)&C_r(t,T)&D_r(t,T)\end{bmatrix}CR. \end{aligned}$$

In particular,

$$\begin{aligned} \begin{aligned} \sigma _{D,1}(t,T)&=A_r(t,T)+\rho _1\beta _1C_r(t,T),\\ \sigma _{D,2}(t,T)&=0,\\ \sigma _{D,3}(t,T)&=\sqrt{1-\rho _1^2}\beta _1C_r(t,T), \quad \text {and}\\ \sigma _{D,4}(t,T)&=0. \end{aligned} \end{aligned}$$
(B.4)

The second equation of (B.1) is due to the following PDE obtained by Feynman-Kac formula:

$$\begin{aligned} \frac{\partial P_D}{\partial t}+ \sum _{i=1}^{4}\mu _{x_i}^{\mathbb {Q}}\frac{\partial P_D}{\partial x_i}+ \frac{1}{2}\sum _{i=1}^{4}\left[ (CV_tR)(CV_tR)^{\mathbb {T}}\right] _{i,j}\frac{\partial ^2 P_D}{\partial x_i x_j}-r(t)P_D= & {} 0 ,\nonumber \\ \hbox {(Terminal condition)}\quad P_D\left( T,T;r(T),x(T),v_1(T),v_2(T)\right)= & {} 1.\nonumber \\ \end{aligned}$$
(B.5)

By Ito’s Lemma,

$$\begin{aligned} \begin{aligned} d\ln P_D(t,T)&= \frac{d\ln P_D}{dP_D}\,dP_D+\frac{1}{2}\frac{d^2\ln P_D}{dP_D^2}\,(dP_D)^2\\&=\frac{1}{P_D(t,T)}\left[ r(t)P_D(t,T)\,dt+\vec {\sigma _D}(t,T)d\vec {W}^{\mathbb {Q}}\right] \\&\quad -\frac{1}{2}\vec {\sigma _D}(t,T)\vec {\sigma _D}(t,T)^\mathbb {T}\,dt\\&=\left[ r(t)-\frac{1}{2}\vec {\sigma _D}(t,T)\vec {\sigma _D}(t,T)^\mathbb {T}\right] \,dt+\vec {\sigma _D}(t,T)\,d\vec {W}^{\mathbb {Q}}, \end{aligned} \end{aligned}$$
(B.6)

which yields (5).\(\square \)

Appendix C. Proof of Proposition 2.2

As \(\alpha _x(t)\) is deterministic,

$$\begin{aligned} \begin{aligned} P_X(t,T)&=\mathbb {E}^{\mathbb {Q}} \left[ \left. e^{-\int _{t}^{T}x(s)ds} \right| \mathcal {F}_t\right] = \mathbb {E}^{\mathbb {Q}}\left[ \left. e^{-\int _{t}^{T}\left[ \alpha _x(s)+\zeta _x(s)\right] ds} \right| \mathcal {F}_t\right] \\&= e^{-\int _{t}^{T}\alpha _x(s)ds}\mathbb {E}^{\mathbb {Q}}\left[ \left. e^{-\int _{t}^{T}\zeta _x(s)ds} \right| \mathcal {F}_t\right] = e^{-\int _{t}^{T}\alpha _x(s)ds}P_{\zeta _x}(t,T). \end{aligned} \end{aligned}$$

By Feynman-Kac formula, \(P_{\zeta _x}(t,T)\) satisfies the following PDE with a terminal condition:

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\partial P_{\zeta _x}}{\partial t}+ \frac{\partial P_{\zeta _x}}{\partial \zeta _r}\left[ -a\zeta _r+\eta ^{\mathbb {Q}}_{r}(t,T)v_1\right] + \frac{\partial P_{\zeta _x}}{\partial \zeta _x}\left[ -b\zeta _x+\eta ^{\mathbb {Q}}_{x}(t,T)v_1\right] \\&\quad +\frac{\partial P_{\zeta _x}}{\partial v_1}\left[ \bar{V_1}-\kappa _1v_1+\eta ^{\mathbb {Q}}_{v1}(t,T)v_1\right] +\frac{\partial P_{\zeta _x}}{\partial v_2}\left[ \bar{V_2}-\kappa _2v_2+\eta ^{\mathbb {Q}}_{v2}(t,T)v_2\right] \\&\quad +\frac{1}{2}\sum _{i=1}^{4}\left[ (CV_tR)(CV_tR)^{\mathbb {T}}\right] _{i,j}\frac{\partial ^2 P_{\zeta _x}}{\partial x_i x_j}-\zeta _x(t)P_{\zeta _x}= 0,\\&\qquad \hbox {(Terminal condition)}\quad P_{\zeta _x}\left( T,T;\zeta _r(T),\zeta _x(T),v_1(T),v_2(T)\right) = 1, \end{aligned} \right. \nonumber \\ \end{aligned}$$
(C.1)

where \(x_1:=\zeta _r\), \(x_2:=\zeta _x\), \(x_3:=v_1\), \(x_4:=v_2\).

We propose

$$\begin{aligned} P_{\zeta _x}(t,T)=e^{A_x(t,T)\zeta _r(t)+B_x(t,T)\zeta _x(t)+C_x(t,T)v_1(t)+D_x(t,T)v_2(t)+E_x(t,T)}. \end{aligned}$$
(C.2)

Under this affine proposition for \(P_{\zeta _x}(t,T)\), all of the partial derivatives could be obtained and substituted into (C.1). As (C.1) should be true for \(\forall \zeta _r(t)\), \(\zeta _x(t)\), \(v_1(t)\), and \(v_2(t)\), the coefficients of these four stochastic random variables should be zero over time, which yields \(A_x(t,T)\equiv 0\) and (14).\(\square \)

Appendix D. Proof of Lemma 2.2

By Ito’s Lemma,

$$\begin{aligned} \frac{dP_X(t,T)}{P_X(t,T)}=x(t)dt+\vec {\sigma _X}(t,T) d\vec {W}^{\mathbb {Q}_1}, \end{aligned}$$
(D.1)

where

$$\begin{aligned} \begin{aligned} \vec {\sigma _X}(t,T)&= \begin{bmatrix}A_x(t,T)&B_x(t,T)&C_x(t,T)&D_x(t,T)\end{bmatrix}CV_tR\\&= \begin{bmatrix}\sigma _{X,1}(t,T)\sqrt{v_1(t)} \\ \sigma _{X,2}(t,T)\sqrt{v_2(t)} \\ \sigma _{X,3}(t,T)\sqrt{v_1(t)} \\ \sigma _{X,4}(t,T)\sqrt{v_2(t)}\end{bmatrix}^T. \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} P_X(t,T)=P_X(0,T)e^{\int _0^t\left[ x(s)-\frac{1}{2}\vec {\sigma _X}(s,T)\vec {\sigma _X}^\mathbb {T}(s,T)\right] \,ds+\int _0^t\vec {\sigma _X}(s,T)\,d\vec {W}^{\mathbb {Q}_1}}. \end{aligned}$$
(D.2)

Substituting (9) into (D.1), the dynamics of \(P_X(t,T)\) under \(\mathbb {Q}\) is obtained:

$$\begin{aligned} \frac{dP_X(t,T)}{P_X(t,T)}=\left[ x(t)-\vec {\sigma _X}(t,T)\vec {\sigma _D}^{\mathbb {T}}(t,T)\right] \,dt+\vec {\sigma _X}(t,T)\,d\vec {W}^{\mathbb {Q}}, \end{aligned}$$
(D.3)

which further yields (16). Thus, substituting (5) and (16) into (7), the expression of \(P_Y(t,T)\) is obtained as

$$\begin{aligned} P_Y(t,T) = P_Y(0,T)e^{\int _0^t y(s)-\frac{1}{2}\vec {\sigma _Y}(s,T)\vec {\sigma _Y}^{\mathbb {T}}(s,T)\,ds+\int _0^t \vec {\sigma _Y}(s,T)\,d\vec {W}^{\mathbb {Q}}}, \end{aligned}$$

where

$$\begin{aligned} \vec {\sigma _Y}(t,T)=\vec {\sigma _D}(t,T)+\vec {\sigma _X}(t,T). \end{aligned}$$

Let

$$\begin{aligned} \begin{aligned} A_y(t,T)&:= A_r(t,T)+A_x(t,T)=A_r(t,T),\\ B_y(t,T)&:= B_r(t,T)+B_x(t,T)=B_x(t,T),\\ C_y(t,T)&:= C_r(t,T)+C_x(t,T), \quad \text {and}\\ D_y(t,T)&:= D_r(t,T)+D_x(t,T)=D_x(t,T). \end{aligned} \end{aligned}$$

Nicely, we observe the following consistency:

$$\begin{aligned} \vec {\sigma _Y}(t,T)= \begin{bmatrix} A_y(t,T)&B_y(t,T)&C_y(t,T)&D_y(t,T) \end{bmatrix}CV_tR. \end{aligned}$$

\(\square \)

Appendix E. Solution for Riccati Equation

We introduce how to solve a Riccati-type ODE in this appendix. Take \(C_r\) as an example:

$$\begin{aligned} \dot{C_r}+\frac{1}{2}\beta _1^2C_r^2+\left( \rho _1\beta _1A_r(s,T)-\kappa _1\right) C_r+ \frac{1}{2}A_r^2(s,T)=0 \quad \text {and} \quad C_r(T,T)&=0. \end{aligned}$$
(E.1)

First, we transform the parameter s into time to maturity \(\tau =T-s\) to obtain an ODE with an initial condition, which is equivalent to (E.1). Let \(f_C(\tau )=C_r(T-\tau ,T)=C_r(s,T)\), such that

$$\begin{aligned}&\dot{f_C}(\tau )+\frac{1}{2}\beta _1^2 f_C^2(\tau )+\left( \rho _1\beta _1A_r(s,T)-\kappa _1\right) f_C(\tau )\nonumber \\&\quad +\frac{1}{2}A_r^2(s,T)=0 \quad \text {and}\quad f_C (0)=0. \end{aligned}$$
(E.2)

The Radon Lemma provided in Theorem 3.1.1 of Abou-Kandil et al. [1] suggests the solution of (E.2) is

$$\begin{aligned} f_C(\tau )= \frac{P(\tau )}{Q(\tau )}, \quad t \le \tau < T, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \frac{d}{dt}\begin{pmatrix} Q\\ P \end{pmatrix}&=\begin{pmatrix} \kappa _1 &{} -\frac{1}{2}\beta _1^2\\ \frac{1}{2}A_r^2(\tau ,T) &{} \rho _1\beta _1A_r(\tau ,T) \end{pmatrix}\begin{pmatrix} Q\\ P \end{pmatrix},\\ Q(0)&=1, \quad \text {and}\\ P(0)&=f_C(0). \end{aligned} \end{aligned}$$
(E.3)

(E.3) can be discretized and solved explicitly as follows:

$$\begin{aligned} \begin{pmatrix} Q(T_{i+1})\\ P(T_{i+1}) \end{pmatrix}-\begin{pmatrix} Q(T_{i})\\ P(T_{i}) \end{pmatrix}=(T_{i+1}-T_i)\begin{pmatrix} \kappa _1 &{} -\frac{1}{2}\beta _1^2\\ \frac{1}{2}A_r^2(T_{i+1},T) &{} \rho _1\beta _1A_r(T_{i+1},T) \end{pmatrix}\begin{pmatrix} Q(T_i)\\ P(T_i) \end{pmatrix}. \end{aligned}$$

The unknown boundary value \(f_C(T)\) or \(C_r(t,T)\) could be determined in the final step as

$$\begin{aligned} f_C(T_n)= \frac{P(T_n)}{Q(T_n)}, \end{aligned}$$

where \(T=T_n\).

Appendix F. Proof of Theorem 4.1

By (30),

$$\begin{aligned} PC(t)\nonumber&=\mathbb {E}^{\mathbb {Q}}\left[ \left. e^{-\int _{t}^{T_1}r(\tau )\,d\tau }\max \left\{ L_Y(T,T_1)-K,0\right\} \Delta T\right| \mathcal {F}_t\right] \nonumber \\&=\mathbb {E}^{\mathbb {Q}}\left[ \left. \frac{e^{-\int _{t}^{T}r(\tau )\,d\tau }e^{-\int _{T}^{T_1}r(\tau )\,d\tau }}{P_Y(T,T_1)}\max \left\{ 1-(1+K\Delta T)P_Y(T,T_1),0\right\} \right| \mathcal {F}_t\right] \nonumber \\&=\mathbb {E}^{\mathbb {Q}}\left[ \left. \mathbb {E}^{\mathbb {Q}}\left[ \left. \frac{e^{-\int _{t}^{T}r(\tau )\,d\tau }e^{-\int _{T}^{T_1}r(\tau )\,d\tau }}{P_Y(T,T_1)}\max \left\{ 1-(1+K\Delta T)P_Y(T,T_1),0\right\} \right| \mathcal {F}_T\right] \right| \mathcal {F}_t\right] \nonumber \\&=\mathbb {E}^{\mathbb {Q}}\left[ \left. \frac{e^{-\int _{t}^{T}r(\tau )\,d\tau }\mathbb {E}^{\mathbb {Q}}\left[ \left. e^{-\int _{T}^{T_1}r(\tau )\,d\tau }\right| \mathcal {F}_T\right] }{P_Y(T,T_1)}\max \left\{ 1-(1+K\Delta T)P_Y(T,T_1),0\right\} \right| \mathcal {F}_t\right] \nonumber \\&= \mathbb {E}^{\mathbb {Q}}\left[ \left. e^{-\int _{t}^{T}r(\tau )\,d\tau }\frac{P_D(T,T_1)}{P_Y(T,T_1)}\max \left\{ 1-(1+K\Delta T)P_Y(T,T_1),0\right\} \right| \mathcal {F}_t\right] . \end{aligned}$$
(F.1)

The following aims to simplify \(e^{-\int _{t}^{T}r(\tau )\,d\tau }\frac{P_D(T,T_1)}{P_Y(T,T_1)}\) in search of the possibility to change the measure. Under \(\mathbb {Q}\),

$$\begin{aligned} e^{-\int _{t}^{T}r(\tau )\,d\tau }&= e^{-\int _{0}^{T}r(\tau )\,d\tau }P_D(T,T)\nonumber \\&= e^{-\int _{0}^{T}r(\tau )\,d\tau }P_D(t,T)e^{\int _{0}^{T}r(\tau )\,d\tau -\frac{1}{2}\int _{t}^{T}\vec {\sigma _D}(\tau ,T)\vec {\sigma _D}^{\mathbb {T}}(\tau ,T)\,d\tau +\int _{t}^{T}\vec {\sigma _D}(\tau ,T)\,d\vec {W}^{\mathbb {Q}}}\nonumber \\&= P_D(t,T)e^{-\frac{1}{2}\int _{t}^{T}\vec {\sigma _D}(\tau ,T)\vec {\sigma _D}^{\mathbb {T}}(\tau ,T)\,d\tau +\int _{t}^{T}\vec {\sigma _D}(\tau ,T)\,d\vec {W}^{\mathbb {Q}}}, \end{aligned}$$
(F.2)

and

$$\begin{aligned} \frac{P_D(T,T_1)}{P_Y(T,T_1)}&= \frac{P_X(T,T)}{P_X(T,T_1)}\nonumber \\&=\frac{P_X(t,T)e^{\int _{t}^{T}\left[ x(\tau )-\vec {\sigma _X}(\tau ,T)\vec {\sigma _D}^{\mathbb {T}}(\tau ,T)-\frac{1}{2}\vec {\sigma _X}(\tau ,T)\vec {\sigma _X}^{\mathbb {T}}(\tau ,T)\right] \,d\tau +\int _{t}^{T}\vec {\sigma _X}(\tau ,T)\,d\vec {W}^{\mathbb {Q}}}}{P_X(t,T_1)e^{\int _{t}^{T}\left[ x(\tau )-\vec {\sigma _X}(\tau ,T_1)\vec {\sigma _D}^{\mathbb {T}}(\tau ,T_1)-\frac{1}{2}\vec {\sigma _X}(\tau ,T_1)\vec {\sigma _X}^{\mathbb {T}}(\tau ,T_1)\right] \,d\tau +\int _{t}^{T}\vec {\sigma _X}(\tau ,T_1)\,d\vec {W}^{\mathbb {Q}}}}. \end{aligned}$$
(F.3)

Multiplying (F.2) and (F.3) enables a change of measure in (F.1):

$$\begin{aligned}&e^{-\int _{t}^{T}r(\tau )\,d\tau }\frac{P_D(T,T_1)}{P_Y(T,T_1)}\nonumber \\&=\frac{P_Y(t,T)}{P_X(t,T_1)}e^{-\frac{1}{2}\int _{t}^{T}\left[ \vec {\sigma _D}(\tau ,T)+\vec {\sigma _X}(\tau ,T)\right] \left[ \vec {\sigma _D}(\tau ,T)+\vec {\sigma _X}(\tau ,T)\right] ^{\mathbb {T}}\,d\tau +\int _{t}^{T}\left[ \vec {\sigma _D}(\tau ,T)+\vec {\sigma _X}(\tau ,T)\right] \,d\vec {W}^{\mathbb {Q}}}\nonumber \\&\quad \times e^{\int _{t}^{T}\vec {\sigma _X}(\tau ,T_1)\vec {\sigma _D}^{\mathbb {T}}(\tau ,T_1)\,d\tau +\frac{1}{2}\int _{t}^{T}\vec {\sigma _X}(\tau ,T_1)\vec {\sigma _X}^\mathbb {T}(\tau ,T_1)\,d\tau -\int _{0}^{T}\vec {\sigma _X}(\tau ,T_1)\,d\vec {W}^{\mathbb {Q}}}\nonumber \\&=\frac{P_Y(t,T)}{P_X(t,T_1)}e^{-\frac{1}{2}\int _{t}^{T}\vec {\sigma _Y}(\tau ,T)\vec {\sigma _Y}^{\mathbb {T}}(\tau ,T)\,d\tau +\int _{t}^{T}\left[ \vec {\sigma _Y}(\tau ,T)-\vec {\sigma _X}(\tau ,T_1)\right] \,d\vec {W}^{\mathbb {Q}}}\nonumber \\&\quad \times e^{\int _{t}^{T}\vec {\sigma _X}(\tau ,T_1)\vec {\sigma _D}^{\mathbb {T}}(\tau ,T_1)\,d\tau +\frac{1}{2}\vec {\sigma _X}(\tau ,T_1)\vec {\sigma _X}^{\mathbb {T}}(\tau ,T_1)\,d\tau }\nonumber \\&= \frac{P_Y(t,T)}{P_X(t,T_1)}e^{-\frac{1}{2}\int _{t}^{T}\left[ \vec {\sigma _Y}(\tau ,T)-\vec {\sigma _X}(\tau ,T_1)\right] \left[ \vec {\sigma _Y}(\tau ,T)-\vec {\sigma _X}(\tau ,T_1)\right] ^{\mathbb {T}}\,d\tau +\int _{t}^{T}\left[ \vec {\sigma _Y}(\tau ,T)-\vec {\sigma _X}(\tau ,T_1)\right] \,d\vec {W}^{\mathbb {Q}}}\nonumber \\&\quad \times e^{\int _{t}^{T}\vec {\sigma _X}(\tau ,T_1)\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] ^{\mathbb {T}}\,d\tau }. \end{aligned}$$
(F.4)

By changing the measure from \(\mathbb {Q}\) to \(\mathbb {Q}_2\), where \(\mathbb {Q}_2\) is defined by (33) and (34), and the price at time t of the caplet is reduced to

$$\begin{aligned}&PC(t) \\&\quad =\frac{P_Y(t,T)}{P_X(t,T_1)}\mathbb {E}^{\mathbb {Q}_2}\left[ \left. e^{\int _t^T\vec {\sigma _X}(\tau ,T_1)\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] ^{\mathbb {T}}\,d\tau }\max \left\{ 1-\left( 1+K\Delta T\right) P_Y(T,T_1),0\right\} \right| \mathcal {F}_t\right] .\nonumber \end{aligned}$$
(F.5)

Under \(\mathbb {Q}_2\), the risk-bearing zero bond \(P_Y(t,T_1)\) follows these dynamics:

$$\begin{aligned} \frac{dP_Y(t,T_1)}{P_Y(t,T_1)}=\left[ y(t)+\vec {\sigma _Y}(t,T_1)\left[ \vec {\sigma _Y}(t,T)-\vec {\sigma _X}(t,T_1)\right] ^{\mathbb {T}}\right] \,dt+\vec {\sigma _Y}(t,T_1)\,d\vec {W}^{\mathbb {Q}_2}, \end{aligned}$$

which yields

$$\begin{aligned} P_Y(T,T_1)&= P_Y(t,T_1)e^{\int _{t}^{T}\left[ y(\tau )+\vec {\sigma _Y}(\tau ,T_1)\left[ \vec {\sigma _Y}(t,T)-\vec {\sigma _X}(t,T_1)\right] ^{\mathbb {T}}-\frac{1}{2}\vec {\sigma _Y}(t,T_1)\vec {\sigma _Y}^{\mathbb {T}}(\tau ,T_1)\right] \,d\tau +\int _t^T\vec {\sigma _Y}(\tau ,T_1)\,d\vec {W}^{\mathbb {Q}_2}} \quad \text {and} \end{aligned}$$
(F.6)
$$\begin{aligned} P_Y(T,T)&= P_Y(t,T)e^{\int _{t}^{T}\left[ y(\tau )+\vec {\sigma _Y}(\tau ,T)\left[ \vec {\sigma _Y}(t,T)-\vec {\sigma _X}(t,T_1)\right] ^{\mathbb {T}}-\frac{1}{2}\vec {\sigma _Y}(t,T)\vec {\sigma _Y}^{\mathbb {T}}(\tau ,T)\right] \,d\tau +\int _t^T\vec {\sigma _Y}(\tau ,T)\,d\vec {W}^{\mathbb {Q}_2}}. \end{aligned}$$
(F.7)

Dividing (F.6) by (F.7) gives a simplified form of \(P_Y(T,T_1)\):

$$\begin{aligned} \begin{aligned} P_Y(T,T_1)&=\frac{P_Y(T,T_1)}{P_Y(T,T)}=\frac{P_Y(t,T_1)}{P_Y(t,T)}\\&\quad \times e^{\int _0^T\left[ \left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] \left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] ^{\mathbb {T}}-\frac{1}{2}\vec {\sigma _Y}(\tau ,T_1)\vec {\sigma _Y}^{\mathbb {T}}(\tau ,T_1)+\frac{1}{2}\vec {\sigma _Y}(\tau ,T)\vec {\sigma _Y}^{\mathbb {T}}(\tau ,T)\right] \,d\tau }\\&\quad \times e^{\int _{t}^{T}\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] \,d\vec {W}^{\mathbb {Q}_2}}\\&= \frac{P_Y(t,T_1)}{P_Y(t,T)}e^{-\frac{1}{2}\int _{t}^{T}\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] \left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] ^{\mathbb {T}}\,d\tau +\int _{t}^{T}\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] \,d\vec {W}^{\mathbb {Q}_2}}\\ {}&\quad \times e^{-\frac{1}{2}\left[ 2\vec {\sigma _Y}(\tau ,T_1)\vec {\sigma _Y}^{\mathbb {T}}(\tau ,T)-\vec {\sigma _Y}(\tau ,T)\vec {\sigma _Y}^{\mathbb {T}}(\tau ,T)\right] \,d\tau +\frac{1}{2}\int _{t}^{T}\vec {\sigma _Y}(\tau ,T)\vec {\sigma _Y}^{\mathbb {T}}(\tau ,T)\,d\tau }\\ {}&\quad \times e^{\int _t^T\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] \left[ \vec {\sigma _Y}(\tau ,T)-\vec {\sigma _X}(\tau ,T_1)\right] ^{\mathbb {T}}\,d\tau }\\&=\frac{P_Y(t,T_1)}{P_Y(t,T)}e^{-\frac{1}{2}\int _{t}^{T}\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] \left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] ^{\mathbb {T}}\,d\tau +\int _{t}^{T}\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] \,d\vec {W}^{\mathbb {Q}_2}}\\ {}&\quad \times e^{\int _{t}^{T}-\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] \vec {\sigma _X}^{\mathbb {T}}(\tau ,T_1)\,d\tau }. \end{aligned} \end{aligned}$$

Let \(S_1(\tau )\) and \(S_2(\tau )\) be defined by (35). Then \(P_Y(T,T_1)\) is represented by \(e^{S_1(T)+S_2(T)}\) and \(e^{\int _t^T\vec {\sigma _X}(\tau ,T_1)\left[ \vec {\sigma _Y}(\tau ,T_1)-\vec {\sigma _Y}(\tau ,T)\right] ^{\mathbb {T}}\,d\tau }\) is represented by \(e^{-S_1(T)}\).

Appendix G. Proof of Lemma 4.1

Proof

By (34),

$$\begin{aligned} \begin{aligned}&\begin{bmatrix} dr(t)\\dx(t)\\dv_1(t)\\dv_2(t) \end{bmatrix}= \begin{bmatrix} \theta _r(t)-ar(t)\\ \theta _x(t)-bx(t)\\\bar{V_1}-\kappa _1 v_1(t)\\\bar{V_2}-\kappa _2 v_2(t) \end{bmatrix}\,dt+CV_t R\left[ d\vec {W}^{\mathbb {Q}_2}+\left[ \vec {\sigma _Y}(t,T)-\vec {\sigma _X}(t,T_1)\right] ^{\mathbb {T}}dt\right] \\&\quad =\left[ \begin{bmatrix} \theta _r(t)-ar(t)\\ \theta _x(t)-bx(t)\\\bar{V_1}-\kappa _1 v_1(t)\\\bar{V_2}-\kappa _2 v_2(t) \end{bmatrix}+CV_t R\left[ \vec {\sigma _Y}(t,T)-\vec {\sigma _X}(t,T_1)\right] ^{\mathbb {T}}\right] \,dt+CV_t R \,d\vec {W}^{\mathbb {Q}_2}. \end{aligned} \end{aligned}$$

We further simplify the extra drift term under \(\mathbb {Q}_2\).

$$\begin{aligned} CV_t R\left[ \vec {\sigma _Y}(t,T)-\vec {\sigma _X}(t,T_1)\right] ^{\mathbb {T}}&= CV_t R R^{\mathbb {T}}V_t^{\mathbb {T}}C^{\mathbb {T}} \begin{bmatrix} A_y(t,T)-A_x(t,T_1)\\B_y(t,T)-B_x(t,T_1)\\C_y(t,T)-C_x(t,T_1)\\D_y(t,T)-D_x(t,T_1) \end{bmatrix}\\&:= \begin{bmatrix} \eta _r^{\mathbb {Q}_2}(t)v_1(t)\\ \eta _{x,1}^{\mathbb {Q}_2}(t)v_1(t)+\eta _{x,2}^{\mathbb {Q}_2}(t)v_2(t)\\ \eta _{v_1}^{\mathbb {Q}_2}(t)v_1(t)\\ \eta _{v_2}^{\mathbb {Q}_2}(t)v_2(t), \end{bmatrix}, \end{aligned}$$

where \(\eta _r^{\mathbb {Q}_2}\), \(\eta _x^{\mathbb {Q}_2}\), \(\eta _{v_1}^{\mathbb {Q}_2}\), and \(\eta _{v_2}^{\mathbb {Q}_2}\) are defined in (36). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, M.C., Liang, W. & Wong, H.Y. Dual-curve Hull–White interest rate model with stochastic volatility. Japan J. Indust. Appl. Math. 34, 711–745 (2017). https://doi.org/10.1007/s13160-017-0260-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0260-1

Keywords

Mathematics Subject Classification

Navigation