Skip to main content
Log in

On volumetric locking in a hybrid symmetric interior penalty method for nearly incompressible linear elasticity on polygonal meshes

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A hybrid version of a symmetric interior penalty method for nearly incompressible linear elasticity is investigated. When a lifting term is used in the method, the method can be free of volumetric locking. On the other hand, when the lifting term is not used, an interior penalty parameter has to be taken to be of order \(\lambda \), the first Lamé parameter, as \(\lambda \) tends to infinity, in order to guarantee the coercivity of the bilinear form in the method. Taking the interior penalty parameter to be of order \(\lambda \) leads to volumetric locking phenomena when piecewise linear functions are employed to compute approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Douglas Jr., J.: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1, 347–367 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Suri, M.: On locking and robustness in the finite element method. SIAM J. Numer. Anal. 29, 1261–1293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62, 439–463 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bercovier, M., Livne, E.: A 4 CST quadrilateral element for incompressible materials and nearly incompressible materials. Calcolo 16, 5–19 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73, 1067–1087 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  11. Brenner, S.C., Sung, L.Y.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  13. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16, 365–378 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  15. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Schötzau, D., Wang, J.: Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Eng. 195, 3184–3204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  18. Di Pietro, D.A., Nicaise, S.: A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media. Appl. Numer. Math. 63, 105–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Egger, H., Waluga, C.: hp analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33, 687–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, New York (2004)

    Book  MATH  Google Scholar 

  21. Franca, L.P., Stenberg, R.: Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grisvard, P.G.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  24. Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeon, Y., Sheen, D.: A locking-free locally conservative hybridized scheme for elasticity problems. Jpn. J. Ind. Appl. Math. 30, 585–603 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  27. Kikuchi, F.: Rellich-type discrete compactness for some discontinuous Galerkin FEM. Jpn. J. Ind. Appl. Math. 29, 269–288 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kikuchi, F.: Finite element methods for nearly incompressible media. RIMS Kokyuroku (Kyoto Univ.) 1971, 28–46 (2015)

    Google Scholar 

  29. Kikuchi, F., Ishii, K., Oikawa, I.: Discontinuous Galerkin FEM of hybrid displacement type—development of polygonal elements. Theor. Appl. Mech. Jpn. 57, 395–404 (2008)

    Google Scholar 

  30. Kikuchi, F., Koyama, D.: Strong \(L^p\) convergence associated with Rellich-type discrete compactness for discontinuous Galerkin FEM. JSIAM Lett. 6, 25–28 (2014)

    Article  MathSciNet  Google Scholar 

  31. Mercier, B.: Lectures on Topics in Finite Element Solution of Elliptic Problems. Tata Institute of Fundamental Research, Bombay (1979)

    Book  MATH  Google Scholar 

  32. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  33. Oikawa, I.: Hybridized discontinuous Galerkin method with lifting operator. JSIAM Lett. 2, 99–102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oikawa, I.: Hybridized discontinuous Galerkin method for convection–diffusion problems. Jpn. J. Ind. Appl. Math. 31, 335–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65, 327–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Oikawa, I.: Analysis of a reduced-order HDG method for the Stokes equations. J. Sci. Comput. 67, 475–492 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oikawa, I., Kikuchi, F.: Discontinuous Galerkin FEM of hybrid type. JSIAM Lett. 2, 49–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pinkus, A.: \(n\)-Widths in Approximation Theory. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  39. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. doi:10.1090/mcom/3249 (to appear)

  40. Soon, S.C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80, 1058–1092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wihler, T.P.: Locking-free DGFEM for elasticity problems in polygons. IMA J. Numer. Anal. 24, 45–75 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author appreciates the contribution of Mr. Sho Ihara, who carried out numerical experiments where the first author realized that locking phenomena occur in the HSIP-woL method. The authors would like to thank the anonymous referees for their comments which contribute to improve the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Koyama.

Additional information

This work was supported by JSPS KAKENHI Grant Number 23540127.

Appendix A: An analytical representation of \(\widetilde{C}_{*,i}^K\)

Appendix A: An analytical representation of \(\widetilde{C}_{*,i}^K\)

We derive an analytical representation of \(\widetilde{C}_{*,i}^K\) defined by (68) in the case when \(k=1\) and K is a triangle without hanging nodes on \(\partial K\).

Let \(e_j\,(j=1,\,2,\,3)\) denote the sides of K, and the unit outward normal to K on \(e_j\). The constant \(\widetilde{C}_{*,i}^K\) is given as the largest eigenvalue of the following generalized eigenvalue problem:

$$\begin{aligned} \frac{1}{4|K|} \left[ \begin{array}{lll} m_1^2 {\varPhi }&{}\quad m_1m_2{\varPhi }&{}\quad m_1m_3{\varPhi }\\ m_2m_1 {\varPhi }&{}\quad m_2^2{\varPhi }&{}\quad m_2m_3{\varPhi }\\ m_3m_1 {\varPhi }&{}\quad m_3m_2{\varPhi }&{}\quad m_3^2{\varPhi }\end{array} \right] \mathbf {u}= \lambda \left[ \begin{array}{lll} {\varPsi }&{}\quad O &{}\quad O \\ O &{}\quad {\varPsi }&{}\quad O \\ O &{}\quad O &{}\quad {\varPsi }\end{array} \right] \mathbf {u}, \end{aligned}$$
(99)

where, for an arbitrary fixed i, \(m_j:=n^{e_j}_i|e_j|\) \((j=1,\,2,\,3)\),

$$\begin{aligned} {\varPhi }:= \left[ \begin{array}{ll} 1 &{}\quad 1 \\ 1 &{}\quad 1 \end{array} \right] , \quad {\varPsi }:= \frac{1}{6} \left[ \begin{array}{ll} 2 &{}\quad 1 \\ 1 &{}\quad 2 \end{array} \right] , \end{aligned}$$

and \(\{\lambda ,\, \mathbf {u}\} \in \mathbb {R}\times (\mathbb {R}^6{\setminus }\{\mathbf {0}\})\) denotes an eigenpair. The maximum eigenvalue of (99) is given by \(\frac{1}{|K|}\sum _{j=1}^3 m_j^2\), and hence

$$\begin{aligned} \widetilde{C}_{*,i}^K = \frac{1}{|K|} \sum _{j=1}^3 ( n^{e_j}_i|e_j| )^2. \end{aligned}$$

This yields (70).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, D., Kikuchi, F. On volumetric locking in a hybrid symmetric interior penalty method for nearly incompressible linear elasticity on polygonal meshes. Japan J. Indust. Appl. Math. 34, 373–406 (2017). https://doi.org/10.1007/s13160-017-0251-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0251-2

Keywords

Mathematics Subject Classification

Navigation