Skip to main content
Log in

Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with the Sommerfeld boundary conditions

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, using the quadratic spline collocation method (QSC), we numerically solve the Helmholtz equations with the Sommerfeld boundary conditions. By reordering the unknowns, we obtain a \(3\times 3\) block linear system. Then, we introduce a two-step preconditioner based on the approximate inverse block polynomial preconditioner. Theoretical analysis show this preconditioner can largely gather the eigenvalues around 1. Numerical examples are presented to test the error of QSC method and check the efficiency of the presented preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10(4), 582–606 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kammerer, W.J., Reddien, G.W., Varga, R.S.: Quadratic interpolatory splines. Numer. Math. 22, 241–259 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Khalifa, A.K.A., Eilbeck, J.C.: Collocation with quadratic and cubic splines. IMA J. Numer. Anal. 2, 111–121 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sakai, M., Usmani, R.A.: Quadratic spline solutions and two-point boundary value problems. Publ. Res. Inst. Math. Sci. Kyoto Univ. 19, 7–13 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Houstis, E.N., Christara, C.C., Rice, J.R.: Quadratic-spline collocation methods for two-point boundary value problems. J. Numer. Methods Eng. 26, 935–952 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fairweather, G., Meade, D.: A survey of spline collocation methods for the numerical solution of differential equations. In: Diaz, J.C. (ed.) Mathematics for Large Scale Computing. Lecture Notes in Pure and Applied Mathematics, vol. 120, pp. 297–341. Marcel Dekker, New York (1989)

  7. Christara, C.C.: Quadratic spline collocation methods for elliptic partial differential equations. BIT 34, 33–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bialecki, B., Fairweather, G., Karageorghis, A., Nguyen, Q.N.: Optimal superconvergent one step quadratic spline collocation methods. BIT 48, 449–472 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fairweather, G., Karageorghis, A., Maack, J.: Compact optimal quadratic spline collocation methods for the Helmholtz equation. J. Comput. Phys. 230, 2880–2895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, L.B., Liu, H.W., Chen, Y.P.: Polynomial spline approach for solving second-order boundary-value problems with Neumann conditions. Appl. Math. Comput. 217, 6872–6882 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Zahra, W.K., Elkholy, S.M.: Quadratic spline solution for boundary value problem of fractional order. Numer. Algorithm 59, 373–391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition methods for elliptic boundary value problems-a survey. Numer. Algorithm 56, 253–295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constas, A.: Fast Fourier transforms solvers for quadratic spline collocation, M. Sc. Thesis, Dept. of Comput. Science, University of Toronto,Canada,July (1996)

  15. Christara, C.C., Ng, K.S.: Fast Fourier transform solvers and preconditioners for quadratic spline collocation. BIT 42, 702–739 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, H.-B., Huang, T.-Z., Zhang, Y., Liu, X.-P., Li, H.: On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors. Math. Comput. Simul. 79, 2135–2147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, S.: Compact schemes for acoustics in the frequency domain. Math. Comput. Model. 37, 1335–1341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49(3), 1210–1243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Demkowicz, L., Gerdes, K.: Convergence of the infinite element methods for the Helmholtz equation in separable domains. Numer. Math. 79, 11–42 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bayliss, A.: On Accuracy Conditions for the Numerical Computation of Waves. J. Comput. Phys. 59, 396–404 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Britt, D.S., Tsynkov, S.V., Turkel, E.: A High-order numerical method for the Helmholtz equation with nonstandard boundary conditions. SIAM J. Sci. Comput. 35(5), A2255–A2292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reps, B., Vanroose, W., bin Zubair, H.: On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning. J. Comput. Phys. 229, 8384–8405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Van Gijzen, M.B., Erlangga, Y.A., Vuik, C.: Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J. Sci. Comput. 29(5), 1942–1958 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math. 50, 409–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bayliss, A., Goldstein, C.I., Turkel, E.: An iterative method for Helmholtz equation. J. Comput. Phys. 49, 443–457 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Laird, A.L.: Preconditioned iterative solution of the 2D Helmholtz equation. First Years Report. St. Hughs College, Oxford (2001)

    Google Scholar 

  27. Linb, T., Radojev, G., Zarin, H.: Approximation of singularly perturbed reaction-diffusion problems by quadratic \(C^1\)-splines. Numer. Algorithm 61, 35–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lang, F.G., Xu, X.P.: Quintic B-spline collocation method for second order mixed boundary value problem. Comput. Phys. Commun. 183, 913–921 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kadalbajoo, M.K., Gupta, V., Awasthi, A.: A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection-diffusion problem. J. Comput. Appl. Math. 220, 271–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Christara, C.C., Smith, B.: Multigrid and multilevel methods for quadratic spline collocation. BIT 37, 781–803 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kamenetskii, D.S., Ryabenkii, V.S.: Solution of Boundary Value Problems for the Laplace Equation in a Domain with a Cut by the Method of Difference Potentials(in Russian), Preprint 33. Keldysh Institute for Applied Mathematics, USSR Academy of Sciences, Moscow, USSR (1990)

    Google Scholar 

  32. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer Science+Business Media, New York (2007)

    Google Scholar 

  33. Bottcher, C., Strayer, M.R.: Spline methods for conservation equations. In: Lee, D., Robinson, A.R., Vichnevetsky, R. (eds.) Computational Acoustics, vol. 2, pp. 317–338. Elsevier Science Publishers, Amsterdam (1993)

    Google Scholar 

  34. Sleijpen, G.L.G., van der Vorst, H.A.: Maintaining convergence properties of BiCGstab methods in finite precision arithmetic. Numer. Algorithm 10, 203–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sleijpen, G.L.G., van der Vorst, H.A., Fokkema, D.R.: BiCGstab(l) and other hybrid Bi-CG methods. Numer. Algorithm 7, 75–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sleijpeny, G.L.G., Fokkema, D.R.: Bicgstab(l) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1, 11–32 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. Siam J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gander, M.J., Halpern, L., Magoules, F.: An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Meth. Fluids 55, 163–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by 973 Program (2013CB329404), NSFC (61370147, 61170309, 11101071, 11301057), the Fundamental Research Funds for the Central Universities and the Scientific Reserch Fund of Sichuan Provincial Education Department (15ZA0288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Zhu Huang.

Appendix

Appendix

Denote by

$$\begin{aligned} e_1= & {} \left( \begin{array}{cccc} 1&0&\ldots&0 \end{array}\right) _{1\times N}, e_N=\left( \begin{array}{cccc} 0&\ldots&0&1 \end{array}\right) _{1\times N}, \mathbf {0}_{1,N}=\left( \begin{array}{ccc} 0&\ldots&0 \end{array}\right) _{1\times N},\\ f_1= & {} \left( \begin{array}{ccccc} 1/2&1/8&0&\ldots&0 \end{array}\right) _{1\times (N+2)}, f_{N+2}=\left( \begin{array}{ccccc} 0&\ldots&0&1/8&1/2 \end{array}\right) _{1\times (N+2)}. \end{aligned}$$

Let

$$\begin{aligned} \overline{A_0}= & {} \widetilde{A_2},\overline{A_1}=1/h^2T^D,\overline{A_2}=1/8(e_1^T,e_N^T), \overline{A_3}=1/h^2(e_1^T,e_N^T),\\ \overline{A_4}= & {} \widetilde{A_{\sigma }}(1,2:N+1),\\ \overline{A_5}= & {} \widetilde{A_{\delta }}(1,2:N+1),\overline{A_6}=1/8e_1^T,\overline{A_7}=1/8e_N^T, \overline{A_8}=1/h^2e_1^T,\overline{A_9}=1/h^2e_N^T,\\ \overline{B_0}= & {} \widetilde{A_3},\overline{B_1}=1/8T^D+I,\overline{B_2}=\widetilde{A_1}, \overline{B_3}=\widetilde{B_1},\overline{B_4}=(\mathbf {0}_{1,N}^T,1/8T^D+I,\mathbf {0}_{1,N}^T)^T,\\ \overline{B_5}= & {} \widetilde{B_2}, \overline{B_6}=f_1^T, \overline{B_7}=f_{N+2}^T,\overline{B_8}=\widetilde{A_{\sigma }},\overline{B_9}=\widetilde{A}_{\delta }.\\ \overline{S_1}= & {} \overline{A_2}\otimes \overline{B_2}+K\overline{A_2}\otimes \overline{B_3}+\overline{A_3}\otimes \overline{B_3}-h^2/12\overline{A_3}\otimes \overline{B_2},\\ \overline{S_2}= & {} \overline{A_1}\otimes \overline{A_6}+K\overline{B_1}\otimes \overline{A_6}+\overline{B_1}\otimes \overline{A_8}-h^2/12\overline{A_1}\otimes \overline{A_8},\\ \overline{S_3}= & {} \overline{A_1}\otimes \overline{A_7}+K\overline{B_1}\otimes \overline{A_7}+\overline{B_1}\otimes \overline{A_9}-h^2/12\overline{A_1}\otimes \overline{A_9}.\\ \end{aligned}$$

Then, there are

$$\begin{aligned} H_{13}=(\overline{S_1},\overline{S_2},\overline{S_3},\mathbf {0}), H_{23}=(\overline{S_1},\overline{S_2},\overline{S_3},\mathbf {0}), \end{aligned}$$

where \(\mathbf {0}\) is a \(N^2\times (4N+4)\) zero matrix,

$$\begin{aligned} H_{31}=\left( \begin{array}{c} \overline{A_4}\otimes \overline{B_4}\\ \overline{A_5}\otimes \overline{B_4}\\ \overline{B_1}\otimes \overline{A_4}\\ \overline{B_1}\otimes \overline{A_5}\\ \mathbf {0} \end{array}\right) , \quad H_{32}=\left( \begin{array}{c} \mathbf {0}\\ \overline{A_4}\otimes \overline{B_4}\\ \overline{A_5}\otimes \overline{B_4}\\ \overline{B_1}\otimes \overline{A_4}\\ \overline{B_1}\otimes \overline{A_5} \end{array}\right) , \end{aligned}$$

where \(\mathbf {0}\) is a \((4N+4)\times N^2\) zero matrix, and

$$\begin{aligned} H_{31}=\left( \begin{array}{cccccccc} \sigma \overline{B_5}&{}\mathbf {0}&{}\overline{A_4}\otimes \overline{B_6}&{}\overline{A_4}\otimes \overline{B_7}&{}1/2\overline{B_5}&{}\mathbf {0}&{}\mathbf {0}&{}\mathbf {0}\\ \mathbf {0}&{}\delta _{N+2}\overline{B_5}&{}\overline{A_5}\otimes \overline{B_6}&{}\overline{A_5}\otimes \overline{B_7}&{}\mathbf {0}&{}1/2\overline{B_5}&{}\mathbf {0}&{}\mathbf {0}\\ \overline{A_6}\otimes \overline{B_8}&{}\overline{A_7}\otimes \overline{B_8}&{}\sigma _1\overline{B_1}&{}\mathbf {0}&{}\overline{A_6}\otimes \overline{A_0}&{}\overline{A_7}\otimes \overline{A_0}&{}1/2\overline{B_1}&{}\mathbf {0}\\ \overline{A_6}\otimes \overline{B_9}&{}\overline{A_7}\otimes \overline{B_9}&{}\mathbf {0}&{}\delta _{N+2}\overline{B_1}&{}\overline{A_6}\otimes \overline{B_0}&{}\overline{A_7}\otimes \overline{B_0}&{}\mathbf {0}&{}1/2\overline{B_1}\\ -1/2\overline{B_5}&{}\mathbf {0}&{}\mathbf {0}&{}\mathbf {0}&{}\sigma _1\overline{B_5}&{}\mathbf {0}&{} \overline{A_4}\otimes \overline{B_6}&{}\overline{A_4}\otimes \overline{B_7}\\ \mathbf {0}&{}-1/2\overline{B_5}&{}\mathbf {0}&{}\mathbf {0}&{}\mathbf {0}&{}\delta _{N+2}\overline{B_5}&{} \overline{A_5}\otimes \overline{B_6}&{}\overline{A_5}\otimes \overline{B_7}\\ -\overline{A_6}\otimes \overline{A_0}&{}-\overline{A_7}\otimes \overline{A_0}&{}-1/2\overline{B_1}&{}\mathbf {0}&{} \overline{A_6}\otimes \overline{B_8}&{}\overline{A_7}\otimes \overline{B_8}&{}\sigma _1\overline{B_1}&{}\mathbf {0}\\ -\overline{A_6}\otimes \overline{B_0}&{}-\overline{A_7}\otimes \overline{B_0}&{}\mathbf {0}&{} -1/2\overline{B_1}&{} \overline{A_6}\otimes \overline{B_9}&{}\overline{A_7}\otimes \overline{B_9}&{}\mathbf {0}&{}\delta _{N+2}\overline{B_1} \end{array}\right) , \end{aligned}$$

Property 1

For small enough step \(h>0\), \(H_{33}\) is invertible.

Proof

For convenience, we denote by \(D=H_{33}\).

By some computations, we know that all the lines of D are strictly diagonally dominant except the lines \(1, N+2,N+3,2N+4,4N+5,5N+6,5N+7,6N+8.\) In these eight lines, we find eight elements are the important factors which seriously damaged the diagonal dominance, namely \(D_{1,2N+5}, D_{N+2,3N+5}, D_{N+3,3N+4}, D_{2N+4,4N+4}, D_{4N+5,6N+9}, \) \(D_{5N+6,7N+9}, D_{5N+7,7N+8}, D_{6N+8,8N+8}.\)

Denote by \(D_k\) the k column of D, now, we do the following eight elementary column transformations in turn:

$$\begin{aligned}&D_{2N+5}\longrightarrow D_{2N+5}-\sigma _2/\sigma _1C_1,\\&D_{3N+4}\longrightarrow D_{3N+4}-\delta _{N+1}/\delta _{N+2}C_{N+3},\\&D_{3N+5}\longrightarrow D_{3N+5}-\sigma _2/\sigma _1C_{N+2},\\&D_{4N+4}\longrightarrow D_{4N+4}-\delta _{N+1}/\delta _{N+2}C_{2N+4},\\&D_{6N+9}\longrightarrow D_{6N+9}-\sigma _2/\sigma _1C_{4N+5},\\&D_{7N+8}\longrightarrow D_{7N+8}-\delta _{N+1}/\delta _{N+2}C_{5N+7},\\&D_{7N+9}\longrightarrow D_{7N+9}-\sigma _2/\sigma _1C_{5N+6},\\&D_{8N+8}\longrightarrow D_{8N+8}-\delta _{N+1}/\delta _{N+2}C_{6N+8}, \end{aligned}$$

where \(a\longrightarrow b\) means replacing a with b.

Then, we can conclude that the new obtained matrix is strictly diagonally dominant, and hence is invertible. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, WH., Huang, TZ., Li, L. et al. Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with the Sommerfeld boundary conditions. Japan J. Indust. Appl. Math. 33, 701–720 (2016). https://doi.org/10.1007/s13160-016-0225-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-016-0225-9

Keywords

Mathematics Subject Classification

Navigation