Skip to main content
Log in

BiCGstab(l) and other hybrid Bi-CG methods

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

It is well-known that Bi-CG can be adapted so that the operations withA T can be avoided, and hybrid methods can be constructed in which it is attempted to further improve the convergence behaviour. Examples of this are CGS, Bi-CGSTAB, and the more general BiCGstab(l) method. In this paper it is shown that BiCGstab(l) can be implemented in different ways. Each of the suggested approaches has its own advantages and disadvantages. Our implementations allow for combinations of Bi-CG with arbitrary polynomial methods. The choice for a specific implementation can also be made for reasons of numerical stability. This aspect receives much attention. Various effects have been illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bai, D. Hu and L. Reichel, A Newton basis GMRES implementation, University of Kentucky, Technical Report 91-03 (1991).

  2. J.R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Math. Comp. 31 (1977) 162–179.

    Google Scholar 

  3. R. Fletcher, Conjugate gradient methods for indefinite systems, in:Proc. Dundee Biennial Conf. on Numerical Analysis, ed. G. Watson (Springer, New York, 1975).

    Google Scholar 

  4. R.W. Freund and N.M. Nachtigal, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, RIACS, NASA Ames Research Center, Technical Report 91.18 (1991).

  5. G.H. Golub and C.F. Van Loan,Matrix Computations, 2nd ed. (The Johns Hopkins University Press, Baltimore and London, 1989).

    Google Scholar 

  6. M.H. Gutknecht, Variants of BiCGStab for matrices with complex spectrum, SIAM J. Sci. Comput. 14 (1993) 1020–1033.

    Article  MathSciNet  Google Scholar 

  7. C. Lanczos, Solution of systems of linear equations by minimized iteration, J. Res. Nat. Bur. Stand. 49 (1952) 33–53.

    Google Scholar 

  8. F. Leja, Sur certaines suites liées aux ensemble plans et leur application à la representation conforme, Ann. Polon. Math. 4 (1957) 8–13.

    Google Scholar 

  9. T.A. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math. 28 (1977) 307–327.

    Article  Google Scholar 

  10. N.M. Nachtigal, L. Reichel and L.N. Trefethen, A hybrid GMRES algorithm for non-symmetric linear systems, SIMAX 13 (1992) 796–825.

    Google Scholar 

  11. Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Statist. Comput. 14 (1993) 461–469.

    Article  Google Scholar 

  12. Y. Saad and M.H. Schulz, GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.

    Article  Google Scholar 

  13. W. Schönauer,Scientific Computing on Vector Computers (North-Holland, Amsterdam/New York/Oxford/Tokyo, 1987).

    Google Scholar 

  14. G.L.G. Sleijpen and D.R. Fokkema, BiCGstab(l) for linear equations involving matrices with complex spectrum, ETNA 1 (1993) 11–32.

    Google Scholar 

  15. P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10 (1989) 36–52.

    Article  Google Scholar 

  16. K. Turner and H.F. Walker, Efficient High Accuracy Solutions with GMRES(m), SIAM J. Sci. Statist. Comput. 13 (1992) 815–825.

    Article  Google Scholar 

  17. H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.

    Article  Google Scholar 

  18. R. Weiss, Convergence behavior of generalized conjugate gradient methods, PhD thesis, University of Karlsruhe (1990).

  19. J.H. Wilkinson,The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1965).

    Google Scholar 

  20. D.M. Young and K.C. Jea, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Lin. Alg. Appl. 34 (1980) 159–194.

    Article  Google Scholar 

  21. L. Zhou and H.F. Walker, Residual smoothing techniques for iterative methods, SIAM J. Sci. Comput. 15 (1994) 297–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sleijpen, G.L.G., van der Vorst, H.A. & Fokkema, D.R. BiCGstab(l) and other hybrid Bi-CG methods. Numer Algor 7, 75–109 (1994). https://doi.org/10.1007/BF02141261

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02141261

Keywords

AMS subject classification

Navigation