Existence of discrete solitons in discrete nonlinear Schrödinger equations with non-weak couplings

  • Kazuyuki YoshimuraEmail author
Original Paper Area 1


Discrete solitons are spatially localized periodic solutions in the discrete nonlinear Schrödinger equation. The anti-integrable limit is defined for the discrete nonlinear Schrödinger equation as the limit of vanishing couplings. There are an infinite number of trivial discrete solitons in this limit, each of which consists of a finite number of excited sites. The existence of discrete solitons continued from them has been proved only for sufficiently weak couplings. In the present paper, we focus on the case of non-weak couplings and prove the existence of discrete solitons over an explicitly given range of the coupling constant.


Discrete nonlinear Schrödinger equation Discrete soliton 

Mathematics Subject Classification

37K60 37N20 35Q55 



The author would like to thank M. Inubushi for his careful reading of the manuscript and helpful comments and the members of NTT Communication Science Laboratories for their continuous encouragement and support.


  1. 1.
    Takeno, S., Kisoda, K., Sievers, A.J.: Intrinsic localized vibrational modes in anharmonic crystals: Stationary modes. Prog. Theor. Phys. Suppl. 94, 242–269 (1988)CrossRefGoogle Scholar
  2. 2.
    Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)CrossRefGoogle Scholar
  3. 3.
    Aubry, S.: Breathers in nonlinear lattices: Existence, linear stability and quantization. Physica D 103, 201–250 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Flach, S., Willis, C.: Discrete breathers. Phys. Rep. 295, 181–264 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aubry, S.: Discrete breathers: Localization and transfer of energy in discrete Hamiltonian nonlinear systems. Physica D 216, 1–30 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Flach, S., Gorbach, A.V.: Discrete breathers—advances in theory and applications. Phys. Rep. 467, 1–116 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Yoshimura, K., Doi, Y., Kimura, M.: Localized modes in nonlinear discrete systems. In: Ohtsu, M., Yatsui, T. (eds.) Progress in Nanophotonics 3, pp. 119–166. Springer, New York (2014)Google Scholar
  8. 8.
    Eilbeck, J.C., Johansson, M.: The discrete nonlinear Schrödinger equation—20 years on. In: Vázquez, L., et al. (eds.) Localization and Energy Transfer in Nonlinear Systems, pp. 44–67. World Scientific, Singapore (2002)Google Scholar
  9. 9.
    Kevrekidis, P.G. (ed.): The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis. Numerical Computations and Physical Perspectives. Springer, Berlin (2009)zbMATHGoogle Scholar
  10. 10.
    Pelinovsky, D.E.: Localization in Periodic Potentials: From Schrödinger Operators to the Gross–Pitaevskii Equation. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Aubry, S., Abramovich, G.: Chaotic trajectories in the standard map: The concept of anti-integrability. Physica D 43, 199–219 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623–1643 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Livi, R., Spicci, M., MacKay, R.S.: Breathers on a diatomic FPU chain. Nonlinearity 10, 1421–1434 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Archilla, J.F.R., Cuevas, J., Sánchez-Rey, B., Alvarez, A.: Demonstration of the stability or instability of multibreathers at low coupling. Physica D 180, 235–255 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pelinovsky, D.E., Kevrekidis, P.G., Frantzeskakis, D.J.: Stability of discrete solitons in nonlinear Schrödinger lattices. Physica D 212, 1–19 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pelinovsky, D.E., Kevrekidis, P.G., Frantzeskakis, D.J.: Persistence and stability of discrete vortices in nonlinear Schrödinger lattices. Physica D 212, 20–53 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Koukouloyannis, V., Kevrekidis, P.G.: On the stability of multibreathers in Klein–Gordon chains. Nonlinearity 22, 2269–2285 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yoshimura, K.: Existence and stability of discrete breathers in diatomic Fermi–Pasta–Ulam type lattices. Nonlinearity 24, 293–317 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yoshimura, K.: Stability of discrete breathers in nonlinear Klein–Gordon type lattices with pure anharmonic couplings. J. Math. Phys. 53, 102701 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pelinovsky, D.E., Sakovich, A.: Multi-site breathers in Klein–Gordon lattices: Stability, resonances, and bifurcations. Nonlinearity 25, 3423–3451 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hennig, D., Tsironis, G.: Wave transmission in nonlinear lattices. Phys. Rep. 307, 333–432 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Alfimov, G.L., Brazhnyi, V.A., Konotop, V.V.: On classification of intrinsic localized modes for the discrete nonlinear Schrödinger equation. Physica D 194, 127–150 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chong, C., Pelinovsky, D.E., Schneider, G.: On the validity of the variational approximation in discrete nonlinear Schrödinger equations. Physica D 241, 115–124 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hennig, D., Rasmussen, K.Ø., Gabriel, H., Bülow, A.: Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation. Phys. Rev. E 54, 5788–5801 (1996)CrossRefGoogle Scholar
  25. 25.
    Qin, W.X., Xiao, X.: Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices. Nonlinearity 20, 2305–2317 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Weinstein, M.I.: Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity 12, 673–691 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bambusi, D., Penati, T.: Continuous approximation of breathers in one- and two-dimensional DNLS lattices. Nonlinearity 23, 143–157 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jenkinson, M., Weinstein, M.I.: Onsite and offsite bound states of the discrete nonlinear Schrödinger equation and the Peierls–Nabarro barrier. Nonlinearity 29, 27–86 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Herrmann, M.: Homoclinic standing waves in focusing DNLS equations. Discrete Contin. Dyn. Syst. 31, 737–752 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems. Springer, New York (1986)CrossRefzbMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan 2016

Authors and Affiliations

  1. 1.NTT Communication Science LaboratoriesNTT CorporationAtsugiJapan

Personalised recommendations