Skip to main content
Log in

A reaction diffusion model for understanding phyllotactic formation

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Phyllotactic patterns in plants are well known to be related to the golden ratio. Actually, many mathematical models using the theoretical inhibitory effect were proposed to reproduce these phyllotactic patterns. In 1996, Douady and Couder introduced a model using magnetic repulsion and succeeded in reproducing phyllotactic patterns numerically. On the other hand, it was recently revealed in biological experiments that a plant hormone, auxin, regulates the phyllotactic formation as an activator (Reinhardt et al., Nature 426:255–260, 2003). Then, there arises a natural question as to how the inhibitory effect can be related to the auxin. In this paper, a reaction diffusion model is proposed by taking account of auxin behavior in plant tips. The relationship between Douady and Couder’s model and our model is shown by singular limit analysis. It also provides us with the potential function corresponding to the inhibitory effect, and the bifurcation diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atela, P., Golé, C., Hotton, S.: A dynamical system for plant pattern formation: a rigorous analysis. J. Nonlinear Sci. 12, 641–676 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Douady, S., Couder, Y.: Phyllotaxis as a physical self-organized growth process. Phys. Rev. Lett. 68, 2098–2101 (1992)

    Article  Google Scholar 

  3. Douady, S., Couder, Y.: Phyllotaxis as a dynamical self organizing process part 1: the spiral modes resulting from time-periodic iterations. J. Theor. Biol. 178, 255–274 (1996)

    Article  Google Scholar 

  4. Furutani, M., Nakano, Y., Tasaka, M.: MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation. Proc. Natl. Acad. Sci. USA 111, 1198–1203 (2014)

    Article  Google Scholar 

  5. Goldsmith, M.H.M.: Movement of indoleacetic acid in coleoptiles of Avena sativa L. II. suspension of polarity by total inhibition of the basipetal transport. Plant Pliysiol. 41, 15–27 (1966)

    Article  Google Scholar 

  6. Hofmeister, W.: Allgemeine Morphologie der Gewächse. Handbuch der Physiologischen Botanik 1, Leipzig Engelmann (1868)

  7. Jean, R.V.: Phyllotaxis: a Systemic Study in Plant Morphogenesis, pp 147–151, 304–311. Cambridge University Press, Cambridge (1994)

  8. Jönsson, H., Heisler, M.G., Shapiro, B.E., Meyerowitz, E.M., Mjolsness, E.: An auxin-driven polarized transport model for phyllotaxis. Proc. Natl. Acad. Sci. USA 103, 1633–1638 (2006)

    Article  Google Scholar 

  9. Kunz, M.: Some analytical results about two physical models of phyllotaxis. Commun. Math. Phys. 169, 261–295 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kunz, M.: Dynamical models of phyllotaxis. Physica D 157, 147–165 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meinhardt, H.: Out-of-phase oscillations and traveling waves with unusual properties: the use of three-component systems in biology. Physica D 199, 264–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meinhardt, H., Koch, A.J., Bernasconi, G.: Models of pattern formation applied to plant development. In: Barabe, D., Jean, R.V. (eds.) Symmetry in Plants, pp. 723–758. World Scientific Publishing, Singapore (1998)

    Chapter  Google Scholar 

  13. Reinhardt, D., Mandel, T., Kuhlemeier, C.: Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12, 507–518 (2000)

    Article  Google Scholar 

  14. Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C.: Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003)

    Article  Google Scholar 

  15. Reinhardt, D.: Regulation of phyllotaxis. Int. J. Dev. Biol. 49, 539–546 (2005)

    Article  Google Scholar 

  16. Schoute, J.C.: Beiträge zur Blattstellungslehre. Rec. Trav. Bot. Néerl. 10, 153–339 (1913)

    Google Scholar 

  17. Smith, R.S., Guyomarc’h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., Prusinkiewicz, P.: A plausible model of phyllotaxis. Proc. Natl. Acad. Sci. USA 103, 1301–1306 (2006)

    Article  Google Scholar 

  18. Smith, R.S., Kuhlemeier, C., Prusinkiewicz, P.: Inhibition fields for phyllotactic pattern formation: a simulation study. Can. J. Bot. 84, 1635–1649 (2006)

    Article  Google Scholar 

  19. Taiz, L., Zeiger, E.: Plant Physiology, 5th edn. Sinauer Associates, Sunderland (2010)

    Google Scholar 

  20. Thonrey, J.H.M.: Phyllotaxis I. A mechanistic model. Ann. Bot. (Lond.) 39, 491–507 (1975)

    Google Scholar 

  21. Veen, A.H., Lindenmayer, A.: Diffusion mechanism for phyllotaxis. Theoretical, physico-chemical and computer study. Plant Phyiol. 60, 127–139 (1977)

    Article  Google Scholar 

  22. Young, D.A.: On the diffusion theory of phyllotaxis. J. Theor. Biol. 71, 421–432 (1978)

    Article  Google Scholar 

  23. van Iterson, G.: Mathematische und Mikroskopisch-Anatomische Studien über Blattstellungen. Gustav Fischer Verlag, Jena (1907)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Masahiko Furutani of Nara Institute of Science and Technology for discussions about the auxin transport and biological experiments, and Professor Ryo Kobayashi of Hiroshima University for the fruitful discussions. The authors are particularly grateful to the referees for their valuable comments. YT has been supported by Meiji University MIMS Ph.D. Program. MM is partially supported by JSPS KAKENHI Grant Nos. 15K13462 and HN is partially supported by JSPS KAKENHI Grant Nos. 25610036 and 26287024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaro Tanaka.

Appendix

Appendix

Here we will provide an outline of the proof of the theorem and explain the key proposition to overcome the difficulty in the proof. We divide \(S_n^{\varepsilon }(x,t)\) defined in (6) into the following two parts:

$$\begin{aligned} P_n^{\varepsilon }(x,t) : =&\int _{{\mathbb {R}}^2} K \left( x - y, \frac{ 1 }{ \varepsilon }( t - ( n - 1 )T ) \right) e^{ - \frac{ b }{ \varepsilon }( t - ( n - 1 )T ) }S^{\varepsilon }_{n-1} (y,(n-1)T)dy, \\ N_n^{\varepsilon }(x,t) : =&\int _{ 0}^{\frac{1}{\varepsilon }(t-(n-1)T)} ae^{ -b \tau }\sum \limits _{j=0}^{n-1} K\left( x - X^{\varepsilon }_j( t - \varepsilon \tau ), \tau \right) d\tau . \end{aligned}$$

To show that \(S^{ \varepsilon }_n(x,t) \) is the weak solution of \((M_n^{\varepsilon })\), we introduce the following auxiliary system:

$$\begin{aligned} (M_n^{\varepsilon ,\eta })\left\{ \begin{array}{l@{\quad }l} X^{\varepsilon ,\eta }_j(t) = ( R_0 + (t-jT)V )\left( \cos \theta ^{\varepsilon ,\eta }_j , \sin \theta ^{\varepsilon ,\eta }_j \right) , &{} t \in ((n-1)T, nT], \\ \varepsilon \dfrac{\partial S_n}{\partial t} = D\varDelta S_n - bS_n + a\sum \limits _{j=0}^{n-1} \rho _{\eta } \left( x - X^{\varepsilon ,\eta }_j(t)\right) , &{} (x,t) \in {{\mathbb {R}}}^2 \times ((n-1)T, nT], \\ S_n(x,(n-1)T)=S_{n-1}(x,(n-1)T), &{} x \in {\mathbb {R}}^2, \end{array} \right. \end{aligned}$$

where \(j=0, \ldots , n-1\), \(n \ge 1\), and \(\rho _{\eta }(x)\) is the Friedrichs mollifier with a small parameter \(0<\eta \ll 1\) defined by

$$\begin{aligned} \rho _{\eta }(x)=\frac{1}{\eta }\rho (\frac{1}{\eta }x), \quad \rho (x) := \left\{ \begin{array}{l@{\quad }l} C \exp \left( -\frac{1}{1- \left| x \right| ^2} \right) , &{} \left| x \right| < 1,\\ 0, &{} \left| x \right| \ge 1. \end{array}\right. \end{aligned}$$

The initial conditions for \((S_n, \{X_j^{\varepsilon ,\eta } \}_{j=0}^{2})\), are set similarly to those of \((M_n^{\varepsilon })\). Using the heat kernel, we have the classical solution of \((M_n^{\varepsilon ,\eta })\),

$$\begin{aligned} S_n^{\varepsilon , \eta }(x,t) =&\int _{{\mathbb {R}}^2} K\left( x-y, \frac{1}{\varepsilon } ( t-(n-1)T) \right) e^ { -\frac{b}{\varepsilon }(t- (n-1)T) } S^{\varepsilon ,\eta }_{n-1} (y,(n-1)T)dy \\&+\int ^{ \frac{1}{\varepsilon }(t-(n-1)T) }_ { 0 } \int _{{\mathbb {R}}^2} a e ^ { - b\tau } K\left( x-y, \tau \right) \sum \limits _{j=0}^{n-1}\rho _{\eta } \left( y - X^{\varepsilon ,\eta }_j(t -\varepsilon \tau )\right) dyd\tau . \end{aligned}$$

Theorem A.1

Assume that

\((a1)_n\) :

\(S^{\varepsilon , \eta }_{n-1}(\cdot , (n-1)T), \ S^{\varepsilon }_{n-1}(\cdot , (n-1)T) \in L^{1}({{\mathbb {R}}}^2)\),

\((a2)_n\) :

\(\sup _{\varepsilon ,\eta >0} \Vert S^{\varepsilon ,\eta }_{n-1}(\cdot , (n-1)T) \Vert _{L^1({{\mathbb {R}}}^2)} <C_1\),

\((a3)_n\) :

\( \sup _{\varepsilon >0} \Vert S^{\varepsilon }_{n-1}(\cdot , (n-1)T) \Vert _{L^1({{\mathbb {R}}}^2)} <C_2\),

\((a4)_n\) :

\(\left\| S^{\varepsilon , \eta }_{n-1}(\cdot , (n-1)T) - S^{\varepsilon }_{n-1}(\cdot , (n-1)T) \right\| _{L^1({{\mathbb {R}}}^2)} \rightarrow 0 \ as \ \eta \rightarrow +0\),

\((a5)_n\) :

\(\theta _{j }^{\varepsilon , \eta } \rightarrow \theta _{j }^{\varepsilon } \ as \ \eta \rightarrow +0 \ (j=2, \ldots , n-1)\),

\((a6)_n\) :

\(\theta _{j }^{\varepsilon } \rightarrow \theta _{j }^{0} \ as \ \varepsilon \rightarrow +0 \ (j=2, \ldots , n-1)\).

Then \(S_n^{\varepsilon }(x,t)\) is the unique weak solution of \((M_n^{\varepsilon })\) for \(t \in ((n-1)T, nT]\). Moreover,

$$\begin{aligned} \left\| S^{\varepsilon }_n(\cdot , t) - g_n(\cdot , t) \right\| _{L^1({\mathbb {R}}^2)} \rightarrow 0 \end{aligned}$$

for \(t \in ((n-1)T, nT]\) and

$$\begin{aligned} \min { \tilde{S}}_n^{\varepsilon } \rightarrow \min { \tilde{S}}_n^{0} \end{aligned}$$
(A.1)

as \(\varepsilon \rightarrow +0\). Additionally, if \(\theta \in [0,2\pi )\) attaining the minimum of \({ \tilde{S}}^{0}_n(\theta )\) on \(C_{R_0}(\theta )\) is unique,

$$\begin{aligned} \theta _n^{\varepsilon } \rightarrow \theta _n^{0} \end{aligned}$$

as \(\varepsilon \rightarrow +0\).

Proof of Theorem 4.1

Theorem 4.1 follows from Theorem A.1 via the induction. Indeed, \(S_1^{\varepsilon }(x,t)\) and \(S_1^{0}(x,t)\) satisfy the all assumptions \((a1)_1\)\((a6)_1\) for (0, T]. Hence, we obtain that \(S_1^{\varepsilon }(x,t)\) is the unique weak solution of \((M_1^{\varepsilon })\), \(\left\| S^{\varepsilon }_1(\cdot , t) - g_1(\cdot , t) \right\| _{L^1({\mathbb {R}}^2)} \rightarrow 0 \) for (0, T] as \(\varepsilon \rightarrow +0\), \(\left\| { \tilde{S}}_{1}^{\varepsilon }( \cdot ) - { \tilde{g}_1}(\cdot ) \right\| _{C^1( [0, 2\pi ) )} \rightarrow 0 \) and \(\theta ^{\varepsilon }_1 \rightarrow \theta ^{0}_1\) as \(\varepsilon \rightarrow +0\) since \(\theta _1^0\) is unique at \(t=T\). Thus, the first step of the induction is established. Next suppose that the theorem for \(( 0, (n-1)T]\) holds. All assumptions \((a1)_n\)\((a6)_n\) can be confirmed by Theorem A.1. Therefore, by induction, the proof of Theorem 4.1 is completed. \(\square \)

Proof of Theorem A.1

We mainly explain the outline of the proof. From the assumptions \((a1)_n\)\((a5)_n\), we can prove \(\Vert S_n^{\varepsilon ,\eta }(\cdot , t)- S_n^{\varepsilon }(\cdot , t) \Vert _{L^1({{\mathbb {R}}}^2)} \rightarrow 0\) as \(\eta \rightarrow +0\) by the continuity of \(\varPsi _h\) in \(L^1({{\mathbb {R}}}^2)\) where \(\varPsi _h\) is the shift operator defined by \(\varPsi _hf(\cdot ):=f(x-h)\) for \(x,h \in {{\mathbb {R}}}^2\), namely, \(\Vert \varPsi _h f(\cdot ) -f(\cdot ) \Vert _{L^1({{\mathbb {R}}}^2)} \rightarrow 0\) as \(h \rightarrow 0\). It also follows from \((a1)_n\), \((a4)_n\), \((a5)_n\) and the dominated convergence theorem that \(\Vert {\tilde{S}}_n^{\varepsilon ,\eta }(\cdot )- {\tilde{S}}_n^{\varepsilon }(\cdot ) \Vert _{C^1([0, 2\pi ))} \rightarrow 0\) as \(\eta \rightarrow +0\). Thus, we can determine that \(\theta _n^{\varepsilon , \eta } \rightarrow \theta ^{\varepsilon }\) as \(\eta \rightarrow +0\). Using \(\Vert S_n^{\varepsilon ,\eta }(\cdot , t)- S_n^{\varepsilon }(\cdot , t) \Vert _{L^1({{\mathbb {R}}}^2)} \rightarrow 0\) for \(t \in [(n-1)T, nT]\) and \((a5)_n\), we can show that \(S_n^{\varepsilon }(x, t)\) is the unique weak solution of \((M_n^{\varepsilon })\) for \(t \in ((n-1)T, nT]\) by the Hölder inequality. From \((a3)_n\) and \((a6)_n\) we can show \(\Vert {\tilde{S}}_n^{\varepsilon }(\cdot )- {\tilde{S}}_n^{0}(\cdot ) \Vert _{C^1([0, 2\pi ))} \rightarrow 0\) as \(\varepsilon \rightarrow +0\) which implies (A.1). Since \(S_n^{\varepsilon }\) has the singularity points moving along \(X^{\varepsilon }_j( t - \varepsilon \tau ) (j=0,\ldots ,n-1)\) for \(\tau \in [0, (t-(n-1)T)/\varepsilon ]\), we cannot apply the dominated convergence theorem to show (7). We prepare the following proposition. \(\square \)

Proposition A.1

Under the assumptions \((a3)_n\) and \((a6)_n\),

$$\begin{aligned} \left\| S^{\varepsilon }_n(\cdot ,t) - S^{0}_n(\cdot ,t) \right\| _{L^1({\mathbb {R}}^2)} \rightarrow 0 \end{aligned}$$

as \(\varepsilon \rightarrow +0\) for \(t \in ((n-1)T,nT]\).

Proof

It is easily shown that \(S_n^{\varepsilon }( \cdot ,t),S_n^{0}( \cdot ,t) \in L^1({\mathbb {R}}^2)\). Therefore, we omit it. Next, we show \(\Vert S^{\varepsilon }_n(\cdot ,t) - S^{0}_n(\cdot ,t) \Vert _{L^1({\mathbb {R}}^2)} \rightarrow 0\) as \(\varepsilon \rightarrow +0\). Note that \(S_n^{\varepsilon }( x,t) - S_n^{0}( x,t) = P_n^{\varepsilon }( x,t) + N_n^{\varepsilon }( x,t) - S_n^{0}( x,t) \). Since

$$\begin{aligned} \left\| P_n^{\varepsilon }( \cdot ,t) \right\| _{L^1({\mathbb {R}}^2)}= & {} e^{ -\frac{b}{\varepsilon }(t-(n-1)T)} \int _{{\mathbb {R}}^2}S^{\varepsilon }_{n-1}(y,(n-1)T) dy\\\le & {} C e^{ -\frac{b}{\varepsilon }(t-(n-1)T)} \rightarrow 0 \end{aligned}$$

as \(\varepsilon \rightarrow +0\), we only need to estimate \(\Vert N_n^{\varepsilon }( \cdot ,t) - S^{0}_n( \cdot ,t) \Vert _{L^1({\mathbb {R}}^2)}\). We have that

$$\begin{aligned} \left| N^{\varepsilon }_n - S^{0}_n \right|&\le \int ^{ \frac{1}{\varepsilon } (t-(n-1)T) } _0 ae^{-b\tau } \sum \limits _{j=0}^{n-1} \left| K( x-X^{\varepsilon }_j( t - \varepsilon \tau ), \tau ) - K( x-X^0_j( t ), \tau ) \right| d\tau \\&\ \ \ \ \ \ + \int ^{\infty }_{\frac{1}{\varepsilon } (t-(n-1)T)} ae^{ -b \tau } \sum \limits _{j=0}^{n-1} K( x-X^0_j( t ), \tau ) d\tau . \end{aligned}$$

We denote the first and second terms on the right hand side by \(Q_n^{\varepsilon }(x,t)\) and \(R_n^{\varepsilon }(x,t)\), respectively. We calculate that

$$\begin{aligned} \left\| R_n^{\varepsilon } ( \cdot , t ) \right\| _{L^1({{\mathbb {R}}}^2)}&= \int _{{{\mathbb {R}}}^2} \int ^{ \infty } _{\frac{1}{\varepsilon }(t-(n-1)T)} ae^{ -b \tau } \sum \limits _{j=0}^{n-1} K( x-X^0_j( t ), \tau ) d\tau dx\\&= \int ^{ \infty } _{\frac{1}{\varepsilon }(t-(n-1)T)} ane^{-b\tau }d\tau \\&=\frac{an}{b}e^{-\frac{b}{\varepsilon }(t-(n-1)T)} \rightarrow 0 \end{aligned}$$

as \(\varepsilon \rightarrow +0\). Because \(N^{\varepsilon }_n(x,t)\) and \(S^{0}_n(x,t)\) have singularities at \(X_j^{\varepsilon }(t-\varepsilon \tau )\) and \(X_j^{0}(t)\), respectively, we divide \(\Vert Q_n^{\varepsilon } \Vert _{L^1({{\mathbb {R}}}^2)}\) into three parts.

$$\begin{aligned} H_n^{\varepsilon }( t):= & {} \int _{{{\mathbb {R}}}^2} \int ^{ \sigma } _0 ae^{-b\tau } \sum \limits _{j=0}^{n-1} \left| K( x-X^{\varepsilon }_j( t - \varepsilon \tau ), \tau ) - K( x-X^0_j( t ), \tau ) \right| d\tau dx, \\ I_n^{\varepsilon }( t):= & {} \int _{\varOmega _\varepsilon } \int ^{ \frac{1}{\varepsilon } (t-(n-1)T) } _{ \sigma } ae^{-b\tau }\\&\quad \times \sum \limits _{j=0}^{n-1} \left| K( x-X^{\varepsilon }_j( t - \varepsilon \tau ), \tau ) - K( x-X^0_j( t ), \tau ) \right| d\tau dx, \\ J_n^{\varepsilon }( t ):= & {} \int _{{{\mathbb {R}}}^2 \backslash \varOmega _\varepsilon } \int ^{ \frac{1}{\varepsilon } (t-(n-1)T) } _{ \sigma } ae^{-b\tau }\\&\quad \times \sum \limits _{j=0}^{n-1} \left| K( x-X^{\varepsilon }_j( t - \varepsilon \tau ), \tau ) - K( x-X^0_j( t ), \tau ) \right| d\tau dx, \end{aligned}$$

where \(0<\sigma \ll 1\) and

$$\begin{aligned} \varOmega _{\varepsilon }:= \bigcup _{ \tau \in [ \sigma , \frac{1}{\varepsilon }(t-(n-1)T)] } \left\{ x\in {\mathbb {R}}^2 \bigg | \ \ \left| x - X^{\varepsilon }_j(t - \varepsilon \tau ) \right| \bigg . < \frac{1}{2} \left| x - X^0_j(t) \right| \right\} . \end{aligned}$$

Firstly, we estimate \( H_n^{\varepsilon }( t)\). As \(C_0( {{\mathbb {R}}}^2 \times [0, \sigma ])\) is dense in \(L^1( {{\mathbb {R}}}^2 \times [0, \sigma ])\), for any \({\tilde{\varepsilon }} > 0 \) there exists a function \(\xi (\cdot ,\cdot ) \in C_0( {{\mathbb {R}}}^2 \times [0, \sigma ])\) such that \(\Vert K(\cdot ,\cdot ) - \xi (\cdot ,\cdot ) \Vert _{L^1({{\mathbb {R}}}^2 \times [0,\sigma ))} < {\tilde{\varepsilon }}\). Moreover, for any \({ \tilde{\varepsilon }}>0\), there exists \({ \tilde{\delta }}>0\), such that whenever \( \left| X^0_j(t )-X^{\varepsilon }_j(t -\varepsilon \tau ) \right| < { \tilde{\delta }} \) for \(\tau \in [0, \sigma ]\), we have \(\left| \varPsi _{X^0_j(t )-X^{\varepsilon }_j(t -\varepsilon \tau ) }\xi (\cdot , \tau ) - \xi (x, \tau ) \right| < { \tilde{\varepsilon }} \) since \(\theta ^{\varepsilon } _j \rightarrow \theta ^{0}_j\) as \(\varepsilon \rightarrow +0 \ (j=1, \ldots , n-1)\). Thus we have

$$\begin{aligned} H_n^{\varepsilon } ( t )= & {} \int ^{ \sigma } _0 a e^{-b\tau } \sum \limits _{j=0}^{n-1} \int _{{{\mathbb {R}}}^2} \left| \varPsi _{X^0_j(t )-X^{\varepsilon }_j(t -\varepsilon \tau ) }K(\cdot , \tau )- K(x , \tau ) \right| dxd\tau \\\le & {} \int ^{ \sigma } _0 a e^{-b\tau } \sum \limits _{j=0}^{n-1} \int _{{{\mathbb {R}}}^2} \left| \varPsi _{X^0_j(t )-X^{\varepsilon }_j(t -\varepsilon \tau ) }K(\cdot , \tau )- \varPsi _{X^0_j(t )-X^{\varepsilon }_j(t -\varepsilon \tau ) }\xi (\cdot ,\tau ) \right| dxd\tau \\&+ \int ^{ \sigma } _0 a e^{-b\tau } \sum \limits _{j=0}^{n-1} \int _{{{\mathbb {R}}}^2} \left| \varPsi _{X^0_j(t )-X^{\varepsilon }_j(t -\varepsilon \tau ) }\xi (\cdot , \tau )- \xi (x , \tau ) \right| dxd\tau \\&+ \int ^{ \sigma } _0 a e^{-b\tau } \sum \limits _{j=0}^{n-1} \int _{{{\mathbb {R}}}^2} \left| \xi (x, \tau )- K(x , \tau ) \right| dxd\tau \\\le & {} { \tilde{\varepsilon }} + 2\int ^{ \sigma } _0 a e^{-b\tau } \sum \limits _{j=0}^{n-1} \int _{{{\mathbb {R}}}^2} \left| \xi (x, \tau )- K(x , \tau ) \right| dxd\tau \\< & {} 3{ \tilde{\varepsilon }}. \end{aligned}$$

Secondly, we consider \(I^{\varepsilon }_n(t)\). If \(x \in \varOmega _{\varepsilon }\),

$$\begin{aligned}&\left| \mid x - X^{\varepsilon }_j(t-\varepsilon \tau ) \mid ^2 -\mid x - X^0_j(t) \mid ^2 \right| \\&\quad \le \left| \mid x - X^{\varepsilon }_j(t-\varepsilon \tau ) \mid + \mid x - X^0_j(t) \mid \right| \left| X^{\varepsilon }_j(t-\varepsilon \tau ) - X^0_j(t) \right| \\&\quad \le M\left( (V \varepsilon \tau )^2 +C_n( \varepsilon + ( 1 - \cos ( \theta _j - \theta ^{\varepsilon }_j) ) ) \right) ^{1/2},\\ \end{aligned}$$

where

$$\begin{aligned} M := \sup _{x \in \varOmega _{\varepsilon }} \left\{ \mid x - X^{\varepsilon }_j(t-\varepsilon \tau ) \mid + \mid x - X^0_j(t) \mid \right\} , \quad C_n = 2 (R_0 + nVT )^2. \end{aligned}$$

Thus, using \((a6)_n\), we compute

$$\begin{aligned}&I^{\varepsilon }_n(t)\\= & {} \int _{\varOmega _\varepsilon } \int ^{ \frac{1}{\varepsilon } (t-(n-1)T) } _{ \sigma } \sum \limits _{j=0}^{n-1} \frac{ae^{-b\tau }}{4\pi D \tau } e^{- \frac{ \left| x-X^0_j( t ) \right| ^2 }{4D \tau }} \left| e^{- \frac{ \left| x-X^{\varepsilon }_j( t - \varepsilon \tau ) \right| ^ 2 -\left| x-X^0_j( t ) \right| ^2 }{4D \tau }} - 1 \right| d\tau dx\\\le & {} \sum \limits _{j=0}^{n-1} \left| e^{ \frac{ M \left( (V\varepsilon \sigma )^2 + C_n (\varepsilon + ( 1 - \cos ( \theta ^{0}_j - \theta ^{\varepsilon }_j) ) ) \right) ^{\frac{1}{2}} }{4D \sigma }} - 1 \right| \int _{\varOmega _\varepsilon } \int ^{ \frac{1}{\varepsilon } (t-(n-1)T) } _{ \sigma } \frac{ ae^{-b\tau }}{4\pi D \tau } e^{- \frac{ \left| x-X^0_j( t ) \right| ^2 }{4D \tau }} d\tau dx\\&\rightarrow 0 \end{aligned}$$

as \(\varepsilon \rightarrow 0\). Finally,we consider \(J_n^{\varepsilon }(t)\). Set

$$\begin{aligned} f_n^{\varepsilon }(x,\tau )=ae^{-b\tau } \sum \limits _{j=0}^{n-1} \left| K( x-X^{\varepsilon }_j( t - \varepsilon \tau ), \tau ) - K( x-X^0_j( t ), \tau ) \right| . \end{aligned}$$

Then

$$\begin{aligned} J_n^{\varepsilon }(t)&= \int _{{{\mathbb {R}}}^2 \backslash \varOmega _\varepsilon } \int ^{ \frac{1}{\varepsilon } (t-(n-1)T) } _{ \sigma } f_n^{\varepsilon }(x,\tau ) d\tau dx = \int _{{{\mathbb {R}}}^2 } \int ^{ \infty } _{ \sigma } f_n^{\varepsilon }(x,\tau )\chi _{\varTheta _n}(x,\tau )dx, \end{aligned}$$

where \(\chi _{\varTheta _n}(x,\tau )\) is a characteristic function and

$$\begin{aligned} \varTheta _n:= \left\{ {{\mathbb {R}}}^2 \backslash \varOmega _{\varepsilon } \right\} \times \left[ \sigma , \frac{1}{\varepsilon }(t-(n-1)T) \right) . \end{aligned}$$

As a result of the characteristic function \(\chi _{\varTheta _n}(x,\tau )\), the domain of integration \(J_n^{\varepsilon }(t)\) is independent of \(\varepsilon \). Thus, we have that \(f_n^{\varepsilon }(x,\tau )\chi _{\varTheta _n}(x,\tau ) \rightarrow 0\) pointwise in \( {{\mathbb {R}}}^2 \times [\sigma , \infty ]\) as \(\varepsilon \rightarrow +0\). Since \(\left| x - X^{\varepsilon }_j(t - \varepsilon \tau ) \right| > \left| x - X^0_j(t) \right| /2\) for \(x \notin \varOmega _{\varepsilon }, \ 0 \le \tau < (t-(n-1)T)/\varepsilon \), we have

$$\begin{aligned} \left| f_n^{\varepsilon }(x,\tau )\psi _n^{\varepsilon }(x,\tau ) \right|\le & {} ae^{-b\tau } \sum \limits _{j=0}^{n-1} \left\{ K\left( \frac{1}{2}(x-X^0_j( t )), \tau \right) + K( x-X^0_j( t ), \tau ) \right\} \\&\quad \times \psi _n^{\varepsilon }(x,\tau ) \\\le & {} ae^{-b\tau } \sum \limits _{j=0}^{n-1} \left\{ K\left( \frac{1}{2}(x-X^0_j( t )), \tau \right) + K( x-X^0_j( t ), \tau ) \right\} \end{aligned}$$

which is measurable in \({{\mathbb {R}}}^2 \times [\sigma ,\infty )\). Thus from the dominated convergence theorem, we compute that

$$\begin{aligned} \lim _{\varepsilon \rightarrow +0} J_n^{\varepsilon }(t)= & {} \lim _{\varepsilon \rightarrow +0} \int _{{{\mathbb {R}}}^2 \backslash \varOmega _\varepsilon } \int ^{ \frac{1}{\varepsilon } (t-(n-1)T) } _{ \sigma } f_n^{\varepsilon }(x,\tau ) d\tau dx \\= & {} \int _{{{\mathbb {R}}}^2 } \int ^{ \infty } _{ \sigma } \lim _{\varepsilon \rightarrow +0} f_n^{\varepsilon }(x,\tau )\psi _n^{\varepsilon }(x,\tau ) d\tau dx \\= & {} 0. \end{aligned}$$

\(\square \)

This proposition immediately implies (7). Thus, we have completed the proof of Theorem A.1. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Mimura, M. & Ninomiya, H. A reaction diffusion model for understanding phyllotactic formation. Japan J. Indust. Appl. Math. 33, 183–205 (2016). https://doi.org/10.1007/s13160-015-0202-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0202-8

Keywords

Mathematics Subject Classification

Navigation