Skip to main content
Log in

Shape optimization of flow field improving hydrodynamic stability

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a solution of a shape optimization problem of a flow field for delaying transition from a laminar flow to a turbulent flow. Mapping from an initial domain to a new domain is chosen as the design variable. Main problems are defined by the stationary Navier–Stokes problem and an eigenvalue problem assuming a linear disturbance on the solution of the stationary Navier–Stokes problem. The maximum value of the real part of the eigenvalue is used as an objective cost function. The shape derivative of the cost function is defined as the Fréchet derivative of the cost function with respect to arbitrary variation of the design variable, which denotes the domain variation, and is evaluated using the Lagrange multiplier method. To obtain a numerical solution, we use an iterative algorithm based on the \(H^{1}\) gradient method using the finite element method. To confirm the validity of the solution, a numerical example for two-dimensional Poiseuille flow with a sudden expansion is presented. Results reveal that a critical Reynolds number increases by the iteration of reshaping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Azegami, H.: A solution to domain optimization problems (in Japanese). Trans. Jpn. Soc. Mech. Eng., Ser. A 60(574), 1479–1486 (1994)

  2. Azegami, H.: Regularized solution to shape optimization problem (in Japanese). Trans. Jpn. Soc. Ind. Appl. Math. 23(2), 83–138 (2014)

    Google Scholar 

  3. Azegami, H., Fukumoto, S., Aoyama, T.: Shape optimization of continua using NURBS as basis functions. Struct. Multidiscip. Opt. 47(2), 247–258 (2013). doi:10.1007/s00158-012-0822-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Azegami, H., Kaizu, S., Takeuchi, K.: Regular solution to topology optimization problems of continua. JSIAM Lett. 3, 1–4 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azegami, H., Takeuchi, K.: A smoothing method for shape optimization: Traction method using the Robin condition. Int. J. Comput. Methods 3(1), 21–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Azegami, H., Wu, Z.Q.: Domain optimization analysis in linear elastic problems: Approach using traction method. JSME Int. J. Ser. A 39(2), 272–278 (1996)

    Google Scholar 

  7. Belson, A.B., Semeraro, O., Rowley, C.W., Henningson, S.D.: Feedback control of instabilities in the two-dimensional Blasius boundary layer: the role of sensors and actuators. Phys. Fluids 25(054106) (2013). doi:10.1063/1.4804390

  8. Camarri, S., Iollo, A.: Feedback control of the vortex-shedding instability based on sensitivity analysis. Phys. Fluids 22(094102) (2010). doi:10.1063/1.3481148

  9. Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52, 189–219 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davis, T.: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)

    Article  MATH  Google Scholar 

  11. Fani, A., Camarri, S., Salvetti, V.M.: Stability analysis and control of the flow in a symmetric channel with a sudden expansion. Phys. Fluids 24(084102) (2012). doi:10.1063/1.4745190

  12. Glowinski, R., Pironneau, O.: On the numerical computation of minimum-drag profile in laminar flow. J. Fluid. Mech. 72(2), 385–389 (1975)

    Article  MATH  Google Scholar 

  13. Hadamard, J.: Mémoire des savants etragers. Oeuvres de J. Hadamard, chap. Mémoire sur le probléme d’analyse relatif á l’équilibre des plaques élastiques encastrées, Mémoire des savants etragers, Oeuvres de J. Hadamard, pp. 515–629. CNRS, Paris (1968)

  14. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  15. Haslinger, J., Málek, J., Stebel, J.: Shape optimization in problems governed by generalised Navier–Stokes equations: existence analysis. Control Cybern. 34(1), 283–303 (2005)

    MATH  Google Scholar 

  16. Huan, J., Modi, V.: Optimum design of minimum drag bodies in incompressible laminar flow using a control theory approach. Inv. Probl. Eng. 1(1), 1–25 (1994)

    Article  Google Scholar 

  17. Huan, J., Modi, V.: Design of minimum drag bodies in incompressible laminar flow. Inv. Probl. Eng. 3(1), 233–260 (1996)

    Article  Google Scholar 

  18. Imam, M.H.: Three-dimensional shape optimization. Int. J. Num. Meth. Eng. 18, 661–673 (1982)

    Article  MATH  Google Scholar 

  19. Kaizu, S.: The Gateau derivative of cost functions in the optimal shape problems and the existence of the shape derivatives of solutions of the Stokes problems. JSIAM Lett. 1, 17–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Katamine, E., Azegami, H., Tsubata, T., Itoh, S.: Solution to shape optimization problems of viscous flow fields. Int. J. Comput. Fluid Dyn. 19(1), 45–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katamine, E., Nagatomo, Y., Azegami, H.: Shape optimization of 3d viscous flow fields. Inv. Probl. Sci. Eng. 17(1), 105–114 (2009)

    Article  MATH  Google Scholar 

  22. Marquet, O., Sipp, D., Jacquin, L.: Sensitivity analysis and passive control of cylinder flow. J. Fluid. Mech. 615, 221–252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mizushima, J., Shiotani, Y.: Structural instability of the bifurcation diagram for two-dimensional flow in a channel with a sudden expansion. Comput. Methods Appl. Mech. Eng. 420, 131–145 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Mohammadi, B., Pironneau, O.: Applied shape optimization for fluids. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  25. Pironneau, O.: On optimum profiles in Stokes flow. J. Fluid. Mech. 59(1), 117–128 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pironneau, O.: On optimum design in fluid mechanics. J. Fluid. Mech. 64(1), 97–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  28. Sano, M., Sakai, H.: Numerical determination of minimum drag profile in Stokes flow (in case of two-dimensional finite region and constant cross-sectional area). Trans. Jpn. Soc. Aeronaut. Space Sci. 26(71), 1–9 (1983)

    Google Scholar 

  29. Shapira, M., Degani, D., Weihs, D.: Stability and existence of multiple solutions for viscous flow in suddenly enlarged channels. Comput. Fluids 18, 239–258 (1990)

    Article  MATH  Google Scholar 

  30. Sipp, D., Marquet, O., Meliga, P., Barbagallo, A.: Dynamics and control of global instabilities in open flows: a linearized approach. Appl. Mech. Rev. 63(030801), 1–26 (2010). doi:10.1115/1.4001478

    Google Scholar 

  31. Sokolowski, J., Zolésio, J.P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer-Verlag, New York (1992)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakazawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakazawa, T., Azegami, H. Shape optimization of flow field improving hydrodynamic stability. Japan J. Indust. Appl. Math. 33, 167–181 (2016). https://doi.org/10.1007/s13160-015-0201-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0201-9

Keywords

Mathematics Subject Classification

Navigation