Skip to main content
Log in

Order estimates for the exact Lugannani–Rice expansion

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The Lugannani–Rice formula is a saddlepoint approximation method for estimating the tail probability distribution function, which was originally studied for the sum of independent identically distributed random variables. Because of its tractability, the formula is now widely used in practical financial engineering as an approximation formula for the distribution of a (single) random variable. In this paper, the Lugannani–Rice approximation formula is derived for a general, parametrized sequence \((X^{(\varepsilon )})_{\varepsilon >0}\) of random variables and the order estimates (as \(\varepsilon \rightarrow 0\)) of the approximation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aït-Sahalia, Y., Yu, H.: Saddlepoint approximations for continuous-time Markov processes. J. Economet. 134, 507–551 (2006)

    Article  Google Scholar 

  2. Benabid, A., Bensusan, H., El Karoui, N.: Wishart stochastic volatility: asymptotic smile and numerical framework. Preprint (2010)

  3. Bru, M.F.: Wishart processes. J. Theor. Prob. 4, 724–743 (1991)

    Article  MathSciNet  Google Scholar 

  4. Butler, R.W.: Saddlepoint Approximations with Applications. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  5. Carr, P., Madan, A.: Saddlepoints methods for option pricing. J. Comput. Finance 13(1), 49–61 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Daniels, H.E.: Saddlepoint approximations in statistics. Ann. Math. Stat. 25, 631–650 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daniels, H.E.: Exact saddlepoint approximations. Biometrika 67(1), 59–63 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daniels, H.E.: Tail probability approximations. Int. Stat. Rev. 55, 37–48 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. del Rollin Baño, S., Ferreiro-Castilla, A., Utzet, F.: On the density of log-spot in the Heston volatility model. Stoc. Proc. Appl. 120(10), 2037–2063 (2010)

    Article  MATH  Google Scholar 

  10. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  11. Fonseca, J., Grasselli, M., Tebaldi, C.: Option pricing when correlations are stochastic: an analytical framework. Rev. Deriv. Res. 10(2), 151–180 (2007)

    Article  MATH  Google Scholar 

  12. Fonseca, J., Grasselli, M., Tebaldi, C.: A multifactor volatility Heston model. Quant. Finance 8(6), 591–604 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glasserman, P., Kim, K.-K.: Saddlepoint approximations for affine jump-diffusion models. J. Econ. Dyn. Control 33, 15–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gouriéroux, C.: Continuous time Wishart process for stochastic risk. Economet. Rev. 25(2), 177–217 (2006)

    Article  MATH  Google Scholar 

  15. Gouriéroux, C., Jasiak, J., Sufana, R.: The Wishart autoregressive process of multivariate stochastic volatility. J. Economet. 150, 167–181 (2009)

    Article  Google Scholar 

  16. Grasselli, M., Tebaldi, C.: Solvable affine term structure models. Math. Finance 18(1), 135–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heston, S.: A closed form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  18. Jensen, J.L.: Saddlepoint Approximations. Oxford Statistical Science Series, 16. Clarendon Press and Oxford University Press, Oxford, Newyork. ISBN: 10: 0198522959, ISBN: 13: 978-019852295 (1995)

  19. Kolassa, J. E.: Series Approximation Methods in Statistics. Lecture Notes in Statistics, 3rd edn, vol. 88, Springer-verlag (2006)

  20. Lugannani, R., Rice, S.: Saddlepoint approximations for the distribution of the sum of independent random variables. Adv. Appl. Prob. 12, 475–490 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rogers, L.C.G., Zane, O.: Saddlepoint approximations to option prices. Ann. Appl. Prob. 9, 493–503 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Watson, G.N.: The harmonic functions associated with the parabolic cylinder. Proc. Lond. Math. Soc. 2(17), 116–148 (1918)

    Article  Google Scholar 

  23. Wood, A.T.A., Booth, J.G., Butler, R.W.: Saddlepoint approximations with nonnormal limit disributions. J. Am. Stat. Soc. 88, 680–686 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiong, J., Wong, A., Salopek, D.: Saddlepoint approximations to option price in a general equilibrium model. Stat. Prob. Lett. 71, 361–369 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, J., Hurd, T., Zhang, X.: Saddlepoint approximation method for pricing CDOs. J. Comput. Finance 10, 1–20 (2006)

    Google Scholar 

  26. Yoshikawa, K.: On Generalization of the Lugannani–Rice Formula and Its Application to Stochastic Volatility Models. Master Thesis, Graduate School of Engineering Science, Osaka University (2013) (in Japanese)

Download references

Acknowledgments

The authors thank communications with Masaaki Fukasawa of Osaka University, who directed their attentions to the Lugannani–Rice formula. The authors also thank the anonymous referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kato.

Additional information

Jun Sekine’s research was supported by a Grant-in-Aid for Scientific Research (C), No. 23540133, from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Appendix: Explicit forms of higher order approximation terms

Appendix: Explicit forms of higher order approximation terms

In this section, we introduce the derivation of \(\varPsi ^\varepsilon _2(\hat{w}_\varepsilon )\) and \(\varPsi ^\varepsilon _3(\hat{w}_\varepsilon )\). First, we can inductively calculate \(\hat{\theta }^{(r)}_\varepsilon \) for \(r\ge 4\) by the same calculation as the proof of Proposition 14.

Proposition 16

$$\begin{aligned} \hat{\theta }^{(4)}_\varepsilon= & {} -\frac{K^{(5)}(\hat{\theta }_\varepsilon )}{5(K''(\hat{\theta }_\varepsilon ))^3} + \frac{K^{(3)}(\hat{\theta }_\varepsilon )K^{(4)}(\hat{\theta }_\varepsilon )}{(K''(\hat{\theta }_\varepsilon ))^4} - \frac{8(K^{(3)}(\hat{\theta }_\varepsilon ))^3}{9(K''(\hat{\theta }_\varepsilon ))^5}, \\ \hat{\theta }^{(5)}_\varepsilon= & {} -\frac{K^{(6)}(\hat{\theta }_\varepsilon )}{6(K''(\hat{\theta }_\varepsilon ))^{7/2}} + \frac{35 (K^{(4)}(\hat{\theta }_\varepsilon ))^2}{48(K''(\hat{\theta }_\varepsilon ))^{9/2}} + \frac{7K^{(3)}(\hat{\theta }_\varepsilon )K^{(5)}(\hat{\theta }_\varepsilon )}{6(K''(\hat{\theta }_\varepsilon ))^{9/2}}\\&-\, \frac{35(K^{(3)}(\hat{\theta }_\varepsilon ))^2K^{(4)}(\hat{\theta }_\varepsilon )}{8(K''(\hat{\theta }_\varepsilon ))^{11/2}} + \frac{385(K^{(3)}(\hat{\theta }_\varepsilon ))^4}{144(K''(\hat{\theta }_\varepsilon ))^{13/2}}, \\ \hat{\theta }^{(6)}_\varepsilon= & {} -\frac{K^{(7)}(\hat{\theta }_\varepsilon )}{7(K''(\hat{\theta }_\varepsilon ))^{4}} - \frac{280(K^{(3)}(\hat{\theta }_\varepsilon ))^5}{27(K''(\hat{\theta }_\varepsilon ))^{8}} + \frac{200(K^{(3)}(\hat{\theta }_\varepsilon ))^3K^{(4)}(\hat{\theta }_\varepsilon )}{9(K''(\hat{\theta }_\varepsilon ))^{7}}\\&-\, \frac{25(K^{(4)}(\hat{\theta }_\varepsilon ))^2}{3(K''(\hat{\theta }_\varepsilon ))^{6}} - \frac{20(K^{(3)}(\hat{\theta }_\varepsilon ))^2K^{(5)}(\hat{\theta }_\varepsilon )}{3(K''(\hat{\theta }_\varepsilon ))^{6}} + \frac{2K^{(4)}(\hat{\theta }_\varepsilon )K^{(5)}(\hat{\theta }_\varepsilon )}{(K''(\hat{\theta }_\varepsilon ))^{5}}\\&+\, \frac{4K^{(3)}(\hat{\theta }_\varepsilon )K^{(6)}(\hat{\theta }_\varepsilon )}{3(K''(\hat{\theta }_\varepsilon ))^{5}}, \\ \hat{\theta }^{(7)}_\varepsilon= & {} -\frac{K^{(8)}(\hat{\theta }_\varepsilon )}{8(K''(\hat{\theta }_\varepsilon ))^{9/2}} - \frac{85085(K^{(3)}(\hat{\theta }_\varepsilon ))^6}{1728(K''(\hat{\theta }_\varepsilon ))^{19/2}} - \frac{25025(K^{(3)}(\hat{\theta }_\varepsilon ))^4K^{(4)}(\hat{\theta }_\varepsilon )}{192(K''(\hat{\theta }_\varepsilon ))^{17/2}}\\&+\, \frac{5005(K^{(3)}(\hat{\theta }_\varepsilon ))^2(K^{(4)}(\hat{\theta }_\varepsilon ))^2}{64(K''(\hat{\theta }_\varepsilon ))^{15/2}} - \frac{385(K^{(4)}(\hat{\theta }_\varepsilon ))^3}{64(K''(\hat{\theta }_\varepsilon ))^{13/2}} + \frac{1001(K^{(3)}(\hat{\theta }_\varepsilon ))^3K^{(5)}(\hat{\theta }_\varepsilon )}{24(K''(\hat{\theta }_\varepsilon ))^{15/2}}\\&-\, \frac{231K^{(3)}(\hat{\theta }_\varepsilon )K^{(4)}(\hat{\theta }_\varepsilon )K^{(5)}(\hat{\theta }_\varepsilon )}{8(K''(\hat{\theta }_\varepsilon ))^{13/2}} + \frac{63(K^{(5)}(\hat{\theta }_\varepsilon ))^2}{40(K''(\hat{\theta }_\varepsilon ))^{11/2}} - \frac{77(K^{(3)}(\hat{\theta }_\varepsilon ))^2K^{(6)}(\hat{\theta }_\varepsilon )}{8(K''(\hat{\theta }_\varepsilon ))^{13/2}}\\&+\, \frac{21K^{(4)}(\hat{\theta }_\varepsilon )K^{(6)}(\hat{\theta }_\varepsilon )}{8(K''(\hat{\theta }_\varepsilon ))^{11/2}} + \frac{3K^{(3)}(\hat{\theta }_\varepsilon )K^{(7)}(\hat{\theta }_\varepsilon )}{2(K''(\hat{\theta }_\varepsilon ))^{11/2}}. \end{aligned}$$

Second, by continuing the differentiation in (35), we have

$$\begin{aligned} h^{(4)}(w)= & {} \frac{g^{(4)}(w)}{g(w)} - \frac{6(g'(w))^4}{g(w)^4} + \frac{12(g'(w))^2g''(w)}{g(w)^2} - \frac{3(g''(w))^2}{g(w)^2} - \frac{4g'(w)g^{(3)}(w)}{g(w)^2}, \\ h^{(5)}(w)= & {} \frac{g^{(5)}(w)}{g(w)} - \frac{24(g'(w))^5}{g(w)^5} - \frac{60(g'(w))^3g''(w)}{g(w)^4} + \frac{30g'(w)(g''(w))^2}{g(w)^3}\\&+\, \frac{20(g'(w))^2g^{(3)}(w)}{g(w)^2} - \frac{10g''(w)g^{(3)}(w)}{g(w)^2} - \frac{5g'(w)g^{(4)}(w)}{g(w)^2}, \\ h^{(6)}(w)= & {} \frac{g^{(6)}(w)}{g(w)} - \frac{120(g'(w))^6}{g(w)^6} + \frac{360(g'(w))^4g''(w)}{g(w)^5} - \frac{270(g'(w))^2(g''(w))^2}{g(w)^4}\\&+\, \frac{30(g''(w))^3}{g(w)^2} - \frac{120(g'(w))^3g^{(3)}(w)}{g(w)^4} + \frac{120g'(w)g''(w)g^{(3)}(w)}{g(w)^3}\\&-\, \frac{10(g^{(3)}(w))^2}{g(w)^2} + \frac{30(g'(w))^2g^{(4)}(w)}{g(w)^3} - \frac{15g''(w)g^{(4)}(w)}{g(w)^2} - \frac{6g'(w)g^{(5)}(w)}{g(w)^2}, \\ h^{(7)}(w)= & {} \frac{g^{(7)}(w)}{g(w)} + \frac{720(g'(w))^7}{g(w)^7} - \frac{2520(g'(w))^5g''(w)}{g(w)^6} + \frac{2520(g'(w))^3(g''(w))^2}{g(w)^5}\\&-\, \frac{630g'(w)(g''(w))^3}{g(w)^4} + \frac{840(g'(w))^4g^{(3)}(w)}{g(w)^5} - \frac{1260(g'(w))^2g''(w)g^{(4)}(w)}{g(w)^4}\\&+\, \frac{210(g''(w))^2g^{(3)}(w)}{g(w)^2} + \frac{140g'(w)(g^{(3)}(w))^2}{g(w)^3} - \frac{210(g'(w))^3g^{(4)}(w)}{g(w)^4}\\&+\, \frac{210g'(w)g''(w)g^{(4)}(w)}{g(w)^3} - \frac{35g^{(3)}(w)g^{(4)}(w)}{g(w)^2} + \frac{42(g'(w))^2g^{(5)}(w)}{g(w)^3}\\&-\, \frac{21g''(w)g^{(5)}(w)}{g(w)^2} - \frac{7g'(w)g^{(6)}(w)}{g(w)^2}, \end{aligned}$$

where g(w) and h(w) are defined as (31). Combining this with (34), Lemma 4, and Propositions 4, 8, 10, and 16, we can calculate \(\varPsi ^\varepsilon _2(\hat{w}_\varepsilon )\) and \(\varPsi ^\varepsilon _3(\hat{w}_\varepsilon )\) explicitly.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Sekine, J. & Yoshikawa, K. Order estimates for the exact Lugannani–Rice expansion. Japan J. Indust. Appl. Math. 33, 25–61 (2016). https://doi.org/10.1007/s13160-015-0199-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0199-z

Keywords

Mathematics Subject Classification

Navigation