Skip to main content
Log in

Fast verified computation for solutions of continuous-time algebraic Riccati equations

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A fast numerical algorithm for computing interval matrices containing solutions of continuous-time algebraic Riccati equations is proposed. This algorithm utilizes numerical spectral decomposition and involves only cubic complexity. Stabilizing and anti-stabilizing properties and uniqueness of the contained solution can moreover be verified by this algorithm. Numerical results show the property of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Even if we exploit numerical spectral decomposition of \(A - B\tilde{X}\) instead, analogous discussion is possible, although description will become more complicated.

References

  1. Abels, J., Benner, P.: CAREX—A collection of benchmark examples for continuous-time algebraic Riccati equations (ver. 2.0). Tech. Rep. SLICOT Working Note 1999-14, (1999) http://www.icm.tu-bs.de/NICONET/REPORTS/SLWN1999-14.ps.gz

  2. Bavely, A., Stewart, G.: An algorithm for computing reducing subspaces by block diagonalization. SIAM J. Numer. Anal. 16, 359–367 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bini, D.A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. SIAM Publications, Philadelphia (2012)

    Google Scholar 

  4. Hashemi, B.: Verified computation of symmetric solutions to continuous-time algebraic Riccati matrix equations. In: Procedings of SCAN conference, Novosibirsk, pp. 54–56 (2012) http://conf.nsc.ru/files/conferences/scan2012/139586/Hashemi-scan2012

  5. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  6. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 187–201 (1969). (in German)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luther, W., Otten, W.: Verified calculation of the solution of algebraic Riccati equation. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 105–118. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  8. Luther, W., Otten, W., Traczinski, H.: Verified calculation of the solution of continuous- and discrete time algebraic Riccati equation. Schriftenreihe des Fachbereichs Mathematik der Gerhard-Mercator-Universität Duisburg, Duisburg, SM-DU-422 (1998)

  9. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM Publications, Philadelphia (2000)

    Book  MATH  Google Scholar 

  10. Minamihata, A.: private communication (2013)

  11. Miyajima, S.: Fast enclosure for solutions of Sylvester equations. Linear Algebr. Appl. 439, 856–878 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miyajima, S.: Fast enclosure for all eigenvalues and invariant subspaces in generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 35, 1205–1225 (2014)

    Article  MathSciNet  Google Scholar 

  13. Rump, S.M.: INTLAB—INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–107. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  14. Rump, S.M.: INTLAB—INTerval LABoratory, the MATLAB toolbox for verified computations (ver. 5.3). (2006) http://www.ti3.tu-harburg.de/rump/intlab/

  15. Yano, K., Koga, M.: Verified numerical computation in LQ control problem. Trans. SICE 45, 261–267 (2009). (in Japanese)

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Behnam Hashemi and Prof. Siegfried M. Rump of Shiraz University of Technology and Hamburg University of Technology, respectively, for fruitful discussions. The author also acknowledges the referee for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Miyajima.

Additional information

This research was partially supported by Grant-in-Aid for Scientific Research (C) (23560066, 2011–2015) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyajima, S. Fast verified computation for solutions of continuous-time algebraic Riccati equations. Japan J. Indust. Appl. Math. 32, 529–544 (2015). https://doi.org/10.1007/s13160-015-0178-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0178-4

Keywords

Mathematics Subject Classification

Navigation