Skip to main content
Log in

A note on the convergence theorem of the tridiagonal QR algorithm with Wilkinson’s shift

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We discuss the convergence rate of the QR algorithm with Wilkinson’s shift for tridiagonal symmetric eigenvalue problems. It is well known that the convergence rate is theoretically at least quadratic, and practically better than cubic for most matrices. In an effort to derive the convergence rate, the limiting patterns of some lower right submatrices have been intensively investigated. In this paper, we first describe a new limiting pattern of the lower right 3-by-3 submatrix with a concrete example, and then prove that the convergence rate of this new pattern is strictly cubic. In addition, we stress that our analysis identifies three classes of the limiting patterns of the tridiagonal QR algorithm with Wilkinson’s shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann, W., Parlett, B.N.: A new proof of global convergence for the tridiagonal QL algorithm. SIAM J. Numer. Anal. 15, 929–937 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Huang, H., Tam, T.: On the QR iterations of real matrices. Linear Algebra Appl. 408, 161–176 (2005)

    Article  MathSciNet  Google Scholar 

  3. Jiang, E., Zhang, Z.: A new shift of the QL algorithm for irreducible symmetric matrices. Linear Algebra Appl. 65, 261–272 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Leitte, R.S., Saldanha, N.C., Tomei, C.: The asymptotics of Wilkinson’s shift: loss of cubic convergence. Found. Comput. Math. 10, 15–36 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Parlett, B.N.: Canonical decomposition of Hessenberg matrices. Math. Comput. 21, 223–227 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Parlett, B.N.: Global convergence of the basic QR algorithm on Hessenberg matrices. Math. Comput. 22, 803–817 (1968)

    MathSciNet  Google Scholar 

  7. Parlett, B.N.: The symmetric eigenvalue problem. Prentice-Hall,Englewood Cliffs, New Jersey, 1980; SIAM, Philadelphia (1998)

  8. Wang, T.: Convergence of the tridiagonal QR algorithm. Linear Algebra Appl. 322, 1–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wilkinson, J.H.: The algebraic eigenvalue problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  10. Wilkinson, J.H.: Global convergence of tridiagonal QR algorithm with origin shifts. Linear Algebra Appl. 1, 409–420 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, G.: On the convergence rate of the QL algorithm with Wilkinson’s shift. Linear Algebra Appl. 113, 131–137 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor Takayasu Matsuo and Professor Beresford Parlett for their valuable comments and suggestions. The author also thanks the anonymous reviewer for the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Aishima.

Additional information

The author is supported by JSPS Grant-in-Aid for Young Scientists (Grant Number 25790096).

Appendices

Appendix A: Proof of convergence

We prove here that all the tridiagonal elements of \(T^{(n)}\) converge for any initial matrix \(T^{(0)}\). To this end, we consider a general shift \(s^{(n)}\) satisfying the following conditions:

  1. (i)

    The shift \(s^{(n)}\) converges to a certain eigenvalue \(s^{(\infty )}=\lambda _{l}\);

  2. (ii)

    \(|s^{(n)}-\lambda _{l}|=\mathrm{o}(c^{n})\) for a positive constant \(c<1\).

Note that Wilkinson’s shift satisfies the two conditions: (i) has been proved by [8]; then the convergence rate by the shifts \(s^{(n)}\rightarrow \lambda _{l}\) is at least quadratic because \(|s^{(n)}-\lambda _{l}|\le |s^{(n)}-\alpha _{m}^{(n)}|+|\alpha _{m}^{(n)}-\lambda _{l}| \le 2|\beta _{m-1}^{(n)}|\) by the definition of Wilkinson’s shift and Gershgorin’s circle theorem, and then we have \(|\beta _{m-1}^{(n+1)}|=\mathrm{O}(|\beta _{m-1}^{(n)}|^2)\) by Wilkinson’s proof, which implies (ii).

In what follows, we prove that all the tridiagonal elements \(T^{(n)}\) always converge for such general shifts. The following convergence proof might have been noticed by the experts in this research field because its proof is almost the same as those by [2, 6, 9] for the unshifted QR algorithm. However, to the best of the authors’ knowledge, the proof for the shifted algorithm is not explicitly stated in any reference. For the readers’ convenience, we prove it as follows.

Theorem 5

Suppose that the QR algorithm with a general shift satisfying the above conditions (i) and (ii) is applied to an irreducible tridiagonal matrix T. Then, \(T^{(n)}\) converges to a block diagonal matrix whose block size is at most 2. Further, the lower right diagonal element \(T^{(n)}(m,m)\) converges to \(\lambda _{l}\) and the lower right off-diagonal element \(T^{(n)}(m,m-1)\) converges to 0.

Proof

First of all, we show several important facts for the convergence analysis. Similarly to the discussion in [6] and [9, Chapter8, §28], let \(\tilde{Q}^{(n)},\ \tilde{R}^{(n)}\) be

$$\begin{aligned} \tilde{Q}^{(n)}= & {} Q^{(0)}\ldots Q^{(n-1)},\\ \tilde{R}^{(n)}= & {} R^{(n-1)}\ldots R^{(0)}. \end{aligned}$$

By the orthogonal matrix \(\tilde{Q}^{(n)}\), \(T^{(n)}\) is described as

$$\begin{aligned} T^{(n)} =\left( \tilde{Q}^{(n)}\right) ^\mathrm{T}T\tilde{Q}^{(n)}. \end{aligned}$$
(38)

in view of \(T^{(n+1)}=R^{(n)}Q^{(n)}+s^{(n)}I=(Q^{(n)})^\mathrm{T}(Q^{(n)}R^{(n)}+s^{(n)}I)Q^{(n)}=(Q^{(n)})^\mathrm{T}T^{(n)}Q^{(n)}\). Using (38), we see

$$\begin{aligned} \tilde{Q}^{(n)}\tilde{R}^{(n)}= & {} \tilde{Q}^{(n-1)}\left( T^{(n-1)}-s^{(n-1)}I\right) \tilde{R}^{(n-1)} \nonumber \\= & {} \left( T-s^{(n-1)}I\right) \tilde{Q}^{(n-1)}\tilde{R}^{(n-1)} \nonumber \\= & {} \left( T-s^{(n-1)}I\right) \ldots \left( T-s^{(0)}I\right) . \end{aligned}$$
(39)

Let p(l) denote a permutation of the indices l \((l = 1, \ldots , m)\). Then in view of the condition (i) we can place the shifted eigenvalues in a descending order as

$$\begin{aligned} \left| \lambda _{p(1)}-s^{(\infty )}\right| \ge \cdots \ge \left| \lambda _{p(m-1)}-s^{(\infty )}\right| > \left| \lambda _{p(m)}-s^{(\infty )}\right| =0. \end{aligned}$$
(40)

The last inequality follows from (i) (note that all the eigenvalues are distinct since T is irreducible).

Next, we focus on the eigendecomposition

$$\begin{aligned} T=X\varLambda X^\mathrm{T}, \end{aligned}$$
(41)

where X is the orthogonal matrix consisting of the eigenvectors and \(\varLambda \) is the diagonal matrix with the eigenvalues: \(\mathrm{diag}(\lambda _{p(1)},\ldots ,\lambda _{p(m)})\). Then we see

$$\begin{aligned} \left( T-s^{(0)}I\right) \ldots \left( T-s^{(n-1)}I\right) =X\varLambda ^{(n)} X^\mathrm{T}, \end{aligned}$$
(42)

where

$$\begin{aligned} \varLambda ^{(n)} =\left( \varLambda -s^{(0)}I\right) \ldots \left( \varLambda -s^{(n-1)}I\right) . \end{aligned}$$
(43)

From (38) and (41), we have \(T^{(n)}=(\tilde{Q}^{(n)})^\mathrm{T}X\varLambda X^\mathrm{T}\tilde{Q}^{(n)}\). If all the inequalities are strict in (40), \(T^{(n)}\) converges to \(\varLambda \). Actually, \(T^{(n)}=(\tilde{Q}^{(n)})^\mathrm{T}X\varLambda X^\mathrm{T}\tilde{Q}^{(n)}\) always converges to a block diagonal matrix whose block size is at most 2. In order to prove it, we firstly apply the LU factorization \(X^\mathrm{T}=LU\). Note that \(X^\mathrm{T}\) constructed by the normalized eigenvectors of an irreducible tridiagonal matrix is always LU factorizable [2, 5]. Hence, we see

$$\begin{aligned} \left( T-s^{(0)}I\right) \ldots \left( T-s^{(n-1)}I\right) = X\varLambda ^{(n)} L\left( \varLambda ^{(n)}\right) ^{-1} \varLambda ^{(n)} U. \end{aligned}$$
(44)

Combining it with (39) we have

$$\begin{aligned} \tilde{Q}^{(n)}\tilde{R}^{(n)}= X\varLambda ^{(n)} L(\varLambda ^{(n)})^{-1} \varLambda ^{(n)} U. \end{aligned}$$
(45)

To reveal the relationship between \(\tilde{Q}^{(n)}\) and X, we discuss the behavior of the QR factorization of \(\varLambda ^{(n)} L(\varLambda ^{(n)})^{-1}\) as follows. Let \(D_{\varLambda ^{(n)}}\) be an orthogonal matrix

$$\begin{aligned} \mathrm{diag}\left( \prod _{l=0}^{n-1}\frac{|\lambda _{p(1)} -s^{(l)}|}{(\lambda _{p(1)}-s^{(l)})},\ldots ,\prod _{l=0}^{n-1}\frac{|\lambda _{p(m)} -s^{(l)}|}{(\lambda _{p(m)}-s^{(l)})}\right) . \end{aligned}$$
(46)

It is easy to see that

$$\begin{aligned} D_{\varLambda ^{(n)}} \varLambda ^{(n)}= \mathrm{diag}\left( \prod _{l=0}^{n-1}|\lambda _{p(1)}-s^{(l)}|, \ldots ,\prod _{l=0}^{n-1}|\lambda _{p(m)}-s^{(l)}|\right) . \end{aligned}$$
(47)

In the right-hand side of (45), we have

$$\begin{aligned} \varLambda ^{(n)} L\left( \varLambda ^{(n)}\right) ^{-1}= D_{\varLambda ^{(n)}}^{-1}\left( D_{\varLambda ^{(n)}}\varLambda ^{(n)} L\left( D_{\varLambda ^{(n)}}\varLambda ^{(n)}\right) ^{-1}\right) D_{\varLambda ^{(n)}}, \end{aligned}$$
(48)

and by applying the QR factorization we see

$$\begin{aligned} D_{\varLambda ^{(n)}}\varLambda ^{(n)} L\left( D_{\varLambda ^{(n)}}\varLambda ^{(n)}\right) ^{-1} =P^{(n)}\varGamma ^{(n)}, \end{aligned}$$
(49)

where \(P^{(n)}\) is an orthogonal matrix, \(\varGamma ^{(n)}\) is an upper triangular matrix whose diagonal elements are positive. Let \(D_{U}\) be an orthogonal matrix \(D_{U}=\mathrm{diag}(|u_{11}|/u_{11}, \ldots ,|u_{mm}|/u_{mm})\). Then we see

$$\begin{aligned} \tilde{Q}^{(n)}= & {} XD_{\varLambda ^{(n)}}^{-1}P^{(n)}D_{U}^{-1}, \end{aligned}$$
(50)
$$\begin{aligned} \tilde{R}^{(n)}= & {} D_{U}\varGamma ^{(n)} D_{\varLambda ^{(n)}} \varLambda ^{(n)} U \end{aligned}$$
(51)

from (45), (48), and (49). Therefore, we have

$$\begin{aligned} T^{(n)}=D_{U}\left( P^{(n)}\right) ^\mathrm{T}\varLambda P^{(n)}D_{U}^{-1} \end{aligned}$$
(52)

from (38) and (41).

Since our aim is to prove the convergence of all the elements of \(T^{(n)}\), let us discuss the behavior of the orthogonal matrix \(P^{(n)}\) as \(n\rightarrow \infty \). To this end, we focus on (49). The lower left elements are

$$\begin{aligned} \left( D_{\varLambda ^{(n)}}\varLambda ^{(n)} L\left( D_{\varLambda ^{(n)}}\varLambda ^{(n)}\right) ^{-1}\right) _{ij}=l_{ij} \prod _{l=0}^{n-1}\left| \frac{\lambda _{p(j)} -s^{(l)}}{\lambda _{p(i)}-s^{(l)}}\right| \quad (i>j) \end{aligned}$$
(53)

from (47). Obviously \(\lim _{n\rightarrow \infty }(D_{\varLambda ^{(n)}}\varLambda ^{(n)} L(D_{\varLambda ^{(n)}}\varLambda ^{(n)})^{-1})_{ij}=0\), when \(|\lambda _{p(i)}-s^{(\infty )}| > |\lambda _{p(j)}-s^{(\infty )}|\). Otherwise, from (40) and the condition (ii), we have

$$\begin{aligned} \left| \frac{\lambda _{p(j)}-s^{(l)}}{\lambda _{p(i)}-s^{(l)}}\right| =\left| \frac{\lambda _{p(j)}-\lambda _{p(m)} +\lambda _{p(m)}-s^{(l)}}{\lambda _{p(i)} -\lambda _{p(m)}+\lambda _{p(m)}-s^{(l)}}\right| =1+\mathrm{o}(c^{l}). \end{aligned}$$
(54)

Since a sequence of the size \(\mathrm{o}(c^{l})\) with \(0<c<1\) absolutely converges, \((D_{\varLambda ^{(n)}}\varLambda ^{(n)} L(D_{\varLambda ^{(n)}}\varLambda ^{(n)})^{-1})_{ij}\) represented by the infinite product (53) is convergent:

$$\begin{aligned} \lim _{n\rightarrow \infty }D_{\varLambda ^{(n)}}\varLambda ^{(n)} L\left( D_{\varLambda ^{(n)}}\varLambda ^{(n)}\right) ^{-1}=\tilde{L}. \end{aligned}$$
(55)

The resulting matrix \(\tilde{L}\) is not only unit lower triangular, but also block diagonal with the block sizes at most 2, because if the equality \(|\lambda _{p(k)}-s^{(\infty )}|=|\lambda _{p(k+1)}-s^{(\infty )}|\) in (40) holds, then both inequalities \(|\lambda _{p(k-1)}-s^{(\infty )}|>|\lambda _{p(k)}-s^{(\infty )}|\) and \(|\lambda _{p(k+1)}-s^{(\infty )}|>|\lambda _{p(k+2)}-s^{(\infty )}|\) are satisfied thanks to the fact that the eigenvalues are all distinct. Hence, the orthogonal matrix \(P^{(n)}\) given by the QR factorization of \(D_{\varLambda ^{(n)}}\varLambda ^{(n)} L(D_{\varLambda ^{(n)}}\varLambda ^{(n)})^{-1}\) is convergent:

$$\begin{aligned} \lim _{n\rightarrow \infty }{P}^{(n)}=\tilde{P}, \end{aligned}$$
(56)

where \(\tilde{P}\) is a block diagonal matrix whose block size is at most 2. It then follows that

$$\begin{aligned} \lim _{n\rightarrow \infty }T^{(n)} =D_{U}{\tilde{P}}^\mathrm{T}\varLambda \tilde{P}D_{U}^{-1} \end{aligned}$$
(57)

from (52). Therefore, \(T^{(n)}\) converges to a block diagonal matrix whose block size is at most 2. \(\square \)

Appendix B: Proofs of Lemmas 2 and 3

We prove here Lemmas 2 and 3 in turn.

By the discussion in Appendix A, \(\lambda _{p(m-1)},\ \lambda _{p(m-2)}\) are the eigenvalues of the \(2\times 2\) submatrix

$$\begin{aligned} \left( \begin{array}{c@{\quad }c} \alpha _{m-2}^{(\infty )} &{} \beta _{m-2}^{(\infty )} \\ \beta _{m-2}^{(\infty )} &{} \alpha _{m-1}^{(\infty )} \\ \end{array} \right) . \end{aligned}$$
(58)

In view of \(\beta _{m-2}^{(\infty )}\not = 0\), we see \(|\lambda _{p(m-2)}-\lambda _{p(m)}|=|\lambda _{p(m-1)}-\lambda _{p(m)}|\). The eigenvalues are real and distinct, which implies \((\lambda _{p(m-2)}-\lambda _{p(m)})+(\lambda _{p(m-1)}-\lambda _{p(m)})=0\). Since the sum of the eigenvalues of the matrix (58) is equal to the trace of that, we have \((\alpha _{m-2}^{(\infty )}-s^{(\infty )}) +(\alpha _{m-1}^{(\infty )}-s^{(\infty )})=0\). In other words,

$$\begin{aligned} \lim _{n\rightarrow \infty }\left( \begin{array}{c@{\quad }c} \alpha _{m-2}^{(n)}-s^{(n)} &{} \beta _{m-2}^{(n)} \\ \beta _{m-2}^{(n)} &{} \alpha _{m-1}^{(n)}-s^{(n)} \\ \end{array} \right) = \left( \begin{array}{c@{\quad }c} -D &{} C \\ C &{} D \\ \end{array} \right) \end{aligned}$$
(59)

holds for constants C and D. Obviously, the eigenvalues of the matrix (59) are \(\pm \sqrt{C^2+D^2}\). It then follows that

$$\begin{aligned} \sqrt{C^2+D^2}=\left| \lambda _{p(m-2)}-\lambda _{p(m)}\right| =\left| \lambda _{p(m-1)}-\lambda _{p(m)}\right| . \end{aligned}$$
(60)

This completes the proof of Lemma 2.

Next, we we prove Lemma 3 based on Lemma 1. Actually, in Lemma 1,

$$\begin{aligned} \lim _{n\rightarrow \infty }\left| \gamma ^{(n)}\right| =\prod _{1\le i \le m-2}\left| \lambda _{p(i)}-\lambda _{p(m)}\right| >0 \end{aligned}$$
(61)

holds. We prove (61) below. If \(\lim _{n\rightarrow \infty }\beta _{m-2}^{(n)}= 0\), then \(\lim _{n\rightarrow \infty }\alpha _{m-1}^{(n)}= \lambda _{p(m-1)}\) holds. Therefore, we obtain

$$\begin{aligned} \lim _{n\rightarrow \infty }\left| \gamma ^{(n)}\right| =\lim _{n\rightarrow \infty }\left| d_{m-2}^{(n)}\right| =\lim _{n\rightarrow \infty }\prod _{1\le i \le m-2}\left| \lambda _{p(i)}-\lambda _{p(m)}\right| \end{aligned}$$

from (17) and (19). Next, we consider the situation \(\lim _{n\rightarrow \infty }\beta _{m-2}^{(n)} \not =0\). It is easy to see that, if \(\lim _{n\rightarrow \infty }\beta _{m-2}^{(n)} \not =0\), then \(\lim _{n\rightarrow \infty }\beta _{m-3}^{(n)}= 0\) because the block size of \(T^{(\infty )}\) is at most 2. Combining it with (17), we have

$$\begin{aligned} \lim _{n\rightarrow \infty }d_{m-3}^{(n)}=\prod _{1\le i\le m-3}\left( \lambda _{p(i)}-\lambda _{p(m)}\right) \not =0. \end{aligned}$$
(62)

In addition, we see

$$\begin{aligned} \lim _{n\rightarrow \infty }(\gamma ^{(n)})^2=\lim _{n\rightarrow \infty }\left[ \left( d_{m-2}^{(n)}\right) ^2 +\left( \beta _{m-2}^{(n)}d_{m-3}^{(n)}\right) ^2\right] \end{aligned}$$
(63)

in (19). Noting \(\beta _{m-3}^{(\infty )}=0\) and (17), we see that

$$\begin{aligned} \lim _{n\rightarrow \infty }|\gamma ^{(n)}|= & {} \lim _{n\rightarrow \infty }\sqrt{\left( \alpha _{m-2}^{(n)}-s^{(n)}\right) ^{2} +\left( \beta _{m-2}^{(n)}\right) ^{2}}|d_{m-3}^{(n)}|\nonumber \\= & {} \sqrt{\left( \alpha _{m-2}^{(\infty )}-\lambda _{p(m)}\right) ^2 +\left( \beta _{m-2}^{(\infty )}\right) ^2}\prod _{1\le i \le m-3}|\lambda _{p(i)}-\lambda _{p(m)}| \end{aligned}$$
(64)

holds. Therefore, we obtain (61) from (59) and (60).

Obviously,

$$\begin{aligned} \lim _{n\rightarrow \infty }d_{m-1}^{(n)}=\lim _{n\rightarrow \infty }\prod _{1\le i \le m-1}\left( \lambda _{p(i)}-s^{(n)}\right) \not =0 \end{aligned}$$
(65)

holds. Moreover, if \(D\not =0\), then

$$\begin{aligned} \left| d_{m}^{(n)}\right| \sim \frac{\left| \beta _{m-2}^{(n)}\right| ^2\left| \beta _{m-1}^{(n)}\right| ^2 \left| d_{m-3}^{(n)}\right| }{|D|} \end{aligned}$$
(66)

in the same way as (22).

From (18), (61), (65), and (66), we have

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\left| \beta _{m-1}^{(n+1)}\right| }{\left| \beta _{m-2}^{(n)}\right| ^2\left| \beta _{m-1}^{(n)}\right| ^3} =\frac{\left| d_{m-3}^{(\infty )}\right| }{|D|\left| \lambda _{p(m-1)} -\lambda _{p(m)}\right| ^2\prod _{1\le i \le m-2}\left| \lambda _{p(i)}-\lambda _{p(m)}\right| }. \end{aligned}$$
(67)

Noting \(|\rho _{1}|\) is defined as (25), we have

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\left| \beta _{m-1}^{(n+1)}\right| }{\left| \beta _{m-2}^{(n)}\right| ^2\left| \beta _{m-1}^{(n)}\right| ^3} =\frac{\left| d_{m-3}^{(\infty )}\right| }{\left| \rho _{1}\right| \left| \lambda _{p(m-1)} -\lambda _{p(m)}\right| ^3\prod _{1\le i \le m-2}\left| \lambda _{p(i)}-\lambda _{p(m)}\right| } \end{aligned}$$
(68)

from (67).

We investigate the behavior of \(|d_{m-3}^{(n)}|\). First of all, we assume \(\beta _{m-3}^{(\infty )}\not =0\). Then \(\beta _{m-4}^{(\infty )}=0\) and \(\beta _{m-2}^{(\infty )}=0\). Similarly to (59) and (60),

$$\begin{aligned} \left| \alpha _{m-3}^{(\infty )}-\lambda _{p(m)}\right| ^2 +\left| \beta _{m-3}^{(\infty )}\right| ^2=\left| \lambda _{p(m-3)} -\lambda _{p(m)}\right| ^2=\left| \lambda _{p(m-2)}-\lambda _{p(m)}\right| ^2 \end{aligned}$$
(69)

holds. Noting \(\beta _{m-4}^{(\infty )}=0\), we have

$$\begin{aligned} \left| d_{m-3}^{(\infty )}\right|= & {} \left| \alpha _{m-3}^{(\infty )}-\lambda _{p(m)}\right| \prod _{1\le i \le m-4}\left| \lambda _{p(i)}-\lambda _{p(m)}\right| \\= & {} \sqrt{\left| \lambda _{p(m-3)}-\lambda _{p(m)}\right| ^2 -\left| \beta _{m-3}^{(\infty )}\right| ^2}\prod _{1\le i \le m-4}\left| \lambda _{p(i)}-\lambda _{p(m)}\right| \end{aligned}$$

in the same way as (59) and (60). Moreover, noting \(\left| \lambda _{p(m-3)}-\lambda _{p(m)}\right| =\left| \lambda _{p(m-2)}\right. \left. -\lambda _{p(m)}\right| \), we obtain

$$\begin{aligned} \left| d_{m-3}^{(\infty )}\right| = \sqrt{1-\left| \beta _{m-3}^{(\infty )}\right| ^2/\left| \lambda _{p(m-2)} -\lambda _{p(m)}\right| ^2}\prod _{1\le i \le m-3}\left| \lambda _{p(i)}-\lambda _{p(m)}\right| . \end{aligned}$$
(70)

Actually, it is easy to see that (70) covers the case \(\beta _{m-3}^{(\infty )}=0\). Therefore, we obtain

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\left| \beta _{m-1}^{(n+1)}\right| }{\left| \beta _{m-2}^{(n)}\right| ^2\left| \beta _{m-1}^{(n)}\right| ^3}= & {} \frac{\sqrt{1-\left| \beta _{m-3}^{(\infty )}\right| ^2/\left| \lambda _{p(m-2)} -\lambda _{p(m)}\right| ^2}}{\left| \rho _{1}\right| \left| \lambda _{p(m-1)} -\lambda _{p(m)}\right| ^3\left| \lambda _{p(m-2)}-\lambda _{p(m)}\right| }\nonumber \\= & {} \frac{\left| \rho _{2}\right| }{\left| \rho _{1}\right| \left| \lambda _{p(m-1)} -\lambda _{p(m)}\right| ^3\left| \lambda _{p(m-2)}-\lambda _{p(m)}\right| }, \end{aligned}$$
(71)

where the first equality is due to (68) and (70), the second equality is due to the definition of \(|\rho _{2}|\) in (26). This completes the proof of (24).

The final task is to derive (28) in the case \(\alpha _{m-1}^{(\infty )}=\alpha _{m}^{(\infty )}\). In (21), \(|\beta _{m-1}^{(n)}|/|\alpha _{m-1}^{(n)}-s^{(n)}|\le 1\) in view of the definition of Wilkinson’s shift. Hence,

$$\begin{aligned} \limsup _{n\rightarrow \infty }\frac{\left| d_{m}^{(n)}\right| }{\left| \beta _{m-1}^{(n)}\right| }\le \left| \beta _{m-2}^{(\infty )}\right| ^2\left| d_{m-3}^{(\infty )}\right| \end{aligned}$$

from (21). Also noting \(\left| \beta _{m-2}^{(\infty )}\right| =\left| \lambda _{p(m-1)} -\lambda _{p(m)}\right| =\left| \lambda _{p(m-2)}-\lambda _{p(m)}\right| \), \(\beta _{m-3}^{(\infty )}=0\), we have

$$\begin{aligned} \limsup _{n\rightarrow \infty }\frac{\left| d_{m}^{(n)}\right| }{\left| \beta _{m-1}^{(n)}\right| }\le \prod _{1\le i \le m-1}\left| \lambda _{p(i)}-\lambda _{p(m)}\right| . \end{aligned}$$

Therefore, we obtain (28) from (18), (61), and (65).

Appendix C: Convergence analysis based on perturbation theory

In this section, using perturbation theory we prove Corollary 1. In other words, we prove the following facts:

  • if \(\lim _{n\rightarrow \infty }(\alpha _{m-1}^{(n)}-\alpha _{m}^{(n)})=0\), then \(|\beta _{m-1}^{(n+1)}|=\mathrm{O}(|\beta _{m-1}^{(n)}|^2)\);

  • if \(\lim _{n\rightarrow \infty }(\alpha _{m-1}^{(n)}-\alpha _{m}^{(n)})=D\not =0\), then \(|\beta _{m-1}^{(n+1)}|=\mathrm{O}(|\beta _{m-2}^{(n)}|^2|\beta _{m-1}^{(n)}|^3)\).

In what follows, we use the so-called gap theorem [7, Theorem 11.7.1].

Lemma 4

([7]) Let y be a unit vector, A be a symmetric matrix, and \(\lambda _{l}\) be the eigenvalue of A closest to \(y^\mathrm{T}Ay\). Then

$$\begin{aligned} \left| y^\mathrm{T}Ay-\lambda _{l}\right| \le \frac{\left\| Ay-\left( y^\mathrm{T}Ay\right) y\right\| ^2}{\min _{i\not =l}\left| \lambda _{i}-y^\mathrm{T}Ay\right| } \end{aligned}$$

holds.

First of all, we note

$$\begin{aligned} \left| \beta _{m-1}^{(n+1)}\right| \sim \frac{\left| \lambda _{p(m)}-s^{(n)}\right| }{\left| \lambda _{p(m-1)} -s^{(n)}\right| }\left| \beta _{m-1}^{(n)}\right| \end{aligned}$$
(72)

as \(n\rightarrow \infty \) for the general shifts satisfying \(\beta _{m-1}^{(\infty )}=0\) and the condition (i) in Appendix A. Although this fact might be noticed by the experts, the authors do not know the literature where its proof is explicitly written. Hence, we prove (72) below. Recall that \(T_{k}^{(n)}\) for \(k=1,\ldots ,m\) are the \(k \times k\) leading principal submatrix of \(T^{(n)}\) and \(d_{k}^{(n)}=\det (T_{k}^{(n)}-s^{(n)}I)\) for \(k=1,\ldots ,m\) defined in (17). Then, (65) holds for the general shifts in view of the condition (i) and \(\lim _{n\rightarrow \infty }\beta _{m-1}^{(n)}= 0\). Obviously, \(d_{m}^{(n)}=\prod _{1\le i \le m}(\lambda _{p(i)}-s^{(n)})\). Furthermore, noting that \(\gamma ^{(n)}\) in (19) is bounded and \(\lim _{n\rightarrow \infty }\beta _{m-1}^{(n)}= 0\), in (18) we have

$$\begin{aligned} \left| \beta _{m-1}^{(n+1)}\right| \sim \frac{\left| (\lambda _{p(m)}-s^{(n)})\gamma ^{(n)}\right| }{\prod _{1\le i \le m-1}\left| \lambda _{p(i)}-s^{(n)}\right| }\left| \beta _{m-1}^{(n)}\right| \end{aligned}$$
(73)

as \(n\rightarrow \infty \). From (61), we have (72).

For the discussion below, we describe the relation (72) more precisely. For any \(\epsilon _{1} >0\),

$$\begin{aligned} \left| \beta _{m-1}^{(n+1)}\right| \le \frac{\left| \lambda _{p(m)}-s^{(n)}\right| }{\left| \lambda _{p(m-1)} -s^{(n)}\right| }\left| \beta _{m-1}^{(n)}\right| \left( 1+\epsilon _{1}\right) \end{aligned}$$
(74)

holds for all sufficiently large n.

In order to reveal the convergence rate, let us estimate \(|\lambda _{p(m)}-s^{(n)}|\). To this end, suppose we apply one step of the Jacobi method for the lower right 2-by-2 submatrix of \(T^{(n)}\). Then we see from [7, Chapter9] that the angle \(\theta ^{(n)}\) of Givens rotation for annihilating \(\beta _{m-1}^{(n)}\) satisfies

$$\begin{aligned} \tan \left( 2\theta ^{(n)}\right) =\frac{2\beta _{m-1}^{(n)}}{\alpha _{m-1}^{(n)} -\alpha _{m}^{(n)}}, \end{aligned}$$
(75)

where \(\theta ^{(n)}\) is chosen in the interval \([-\pi /4,\ \pi /4]\). It means that the transformed matrix can be described as

$$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \ddots &{} \ddots &{} &{} &{} \\ \ddots &{} * &{} * &{} &{} \\ &{} * &{} * &{} * &{} z^{(n)} \\ &{} &{} * &{} * &{} 0 \\ &{} &{} z^{(n)} &{} 0 &{} s^{(n)} \\ \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} z^{(n)}=\beta _{m-2}^{(n)}\sin (\theta ^{(n)}). \end{aligned}$$
(76)

Note that \(s^{(\infty )}=\lambda _{p(m)}\). Let

$$\begin{aligned} \delta =\min _{i\not =m}\left| \lambda _{p(i)}-s^{(\infty )}\right| >0. \end{aligned}$$
(77)

For any \(\epsilon _{2} >0\), noting Lemma 4 with \(y:=(0,0,\ldots ,1)^\mathrm{T}\), we have

$$\begin{aligned} \left| \lambda _{p(m)}-s^{(n)}\right| \le \frac{|z^{(n)}|^{2}}{\delta -\epsilon _{2}} \end{aligned}$$
(78)

for all sufficiently large n. In addition, it is easy to see that, for any \(\epsilon _{3} > 0\),

$$\begin{aligned} \left| \lambda _{p(m-1)}-s^{(n)}\right| \ge \delta - \epsilon _{3} \end{aligned}$$
(79)

for all sufficiently large n.

Now we consider the case of \(|\alpha _{m-1}^{(n)} - \alpha _m^{(n)}| \rightarrow D \ne 0\). We obtain

$$\begin{aligned} \left| \beta _{m-1}^{(n+1)}\right|\le & {} \frac{\left| \beta _{m-1}^{(n)}\right| \left| z^{(n)}\right| ^{2}\left| 1+\epsilon _{1}\right| }{\left| \delta -\epsilon _{2}\right| \left| \delta -\epsilon _{3}\right| } \nonumber \\= & {} \frac{\left| \beta _{m-1}^{(n)}\right| \left| \beta _{m-2}^{(n)} \sin (\theta ^{(n)})\right| ^{2}\left| 1+\epsilon _{1}\right| }{\left| \delta -\epsilon _{2}\right| \left| \delta -\epsilon _{3}\right| } \nonumber \\= & {} \frac{\left| \beta _{m-1}^{(n)}\right| ^{3}\left| \beta _{m-2}^{(n)}\right| ^{2}\left| 1 +\epsilon _{1}\right| }{\left| \alpha _{m-1}^{(n)}-\alpha _{m}^{(n)}\right| ^{2}\left| \delta -\epsilon _{2}\right| \left| \delta -\epsilon _{3}\right| } \end{aligned}$$
(80)

for all sufficiently large n by using (74), (79), (78), (76), (75) in turn. We see \(\epsilon _{1}, \epsilon _{2}, \epsilon _{3} \rightarrow 0\) and \(|\alpha _{m-1}^{(n)}-\alpha _{m}^{(n)}| \rightarrow |D| > 0\) as \(n\rightarrow \infty \). Therefore, \(|\beta _{m-1}^{(n+1)}|=\mathrm{O}(|\beta _{m-2}^{(n)}|^{2}|\beta _{m-1}^{(n)}|^{3})\).

Finally, we prove the quadratic convergence in the case \(|\alpha _{m-1}^{(n)}-\alpha _{m}^{(n)}|\rightarrow 0\). Since the estimate (80) by the Jacobi transformation cannot derive the quadratic convergence in the case \(|\alpha _{m-1}^{(n)}-\alpha _{m}^{(n)}|\rightarrow 0\), we give another estimate based on Lemma 4. For any \(\epsilon _{4} >0\), we see

$$\begin{aligned} \left| \lambda _{p(m)}-\alpha _{m}^{(n)}\right| \le \frac{\left| \beta _{m-1}^{(n)}\right| ^{2}}{\delta -\epsilon _{4}} \end{aligned}$$
(81)

for all sufficiently large n from Lemma 4 with \(y:=(0,0,\ldots ,1)^\mathrm{T}\), \(A:=T^{(n)}\). From the definition of Wilkinson’s shift, \(|\alpha _{m}^{(n)}-s^{(n)}|\le |\beta _{m-1}^{(n)}|\) holds. Hence,

$$\begin{aligned} \left| \lambda _{p(m)}-s^{(n)}\right| \le \left| \lambda _{p(m)}-\alpha _{m}^{(n)}\right| +\left| \alpha _{m}^{(n)}-s^{(n)}\right| \le \frac{\left| \beta _{m-1}^{(n)}\right| ^{2}}{\delta -\epsilon _{4}}+\left| \beta _{m-1}^{(n)}\right| \end{aligned}$$
(82)

for all sufficiently large n. Thus, we have

$$\begin{aligned} \left| \beta _{m-1}^{(n+1)}\right| \le \frac{\left| \beta _{m-1}^{(n)}\right| ^{2}\left( \delta -\epsilon _{4}+\beta _{m-1}^{(n)}\right) \left| 1+\epsilon _{1}\right| }{\left| \delta -\epsilon _{3}\right| \left| \delta -\epsilon _{4}\right| } \end{aligned}$$

for all sufficiently large n from (74), (79), (82). We see \(\epsilon _{3}, \epsilon _{4} \rightarrow 0\) and \(\beta _{m-1}^{(n)} \rightarrow 0\) as \(n\rightarrow \infty \). Therefore, \(|\beta _{m-1}^{(n+1)}|=\mathrm{O}(|\beta _{m-1}^{(n)}|^{2})\). This completes the proof.

Although the convergence analysis above is readily accessible to the readers in the research fields of the numerical linear algebra, we also note that the right-hand side of (80) in our proof is an overestimate in the case of \(|\lambda _{p(m-1)}-\lambda _{p(m)}|< |\lambda _{p(m-2)}-\lambda _{p(m)}|\) because we have

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{\left| \alpha _{m-1}^{(n)}-\alpha _{m}^{(n)}\right| ^{2}\left| \delta \right| ^2}= & {} \frac{1}{|D|^2\left| \lambda _{p(m-1)}-\lambda _{p(m)}\right| ^2}\nonumber \\> & {} \frac{1}{|D|\left| \lambda _{p(m-2)} -\lambda _{p(m)}\right| \left| \lambda _{p(m-1)}-\lambda _{p(m)}\right| ^2}\nonumber \\= & {} \frac{1}{\left| \lambda _{p(m-1)} -\lambda _{p(m)}\right| ^3\left| \lambda _{p(m-2)}-\lambda _{p(m)}\right| \left| \rho _{1}\right| }\nonumber \\\ge & {} \frac{\left| \rho _{2}\right| }{\left| \lambda _{p(m-1)} -\lambda _{p(m)}\right| ^3\left| \lambda _{p(m-2)}-\lambda _{p(m)}\right| \left| \rho _{1}\right| }\nonumber \\= & {} \lim _{n\rightarrow \infty }\frac{\left| \beta _{m-1}^{(n+1)}\right| }{\left| \beta _{m-2}^{(n)}\right| ^2\left| \beta _{m-1}^{(n)}\right| ^3}, \end{aligned}$$
(83)

where the first equality is due to the assumption \(\alpha _{m-1}^{(\infty )}-\alpha _{m}^{(\infty )}=D\) and the definition of \(\delta \) in (77), the next inequality is due to (27) and the above condition \(|\lambda _{p(m-1)}-\lambda _{p(m)}|< |\lambda _{p(m-2)}-\lambda _{p(m)}|\), the next equality is due to (25), the next inequality is due to (26), and the last equality is due to (24). Also note that, in the case of \(\beta _{m-2}^{(\infty )}=C\not =0\), the above relation (83) holds because we have the strict inequality in (83) from (60). Therefore, the right-hand side of (80) is an overestimate.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aishima, K. A note on the convergence theorem of the tridiagonal QR algorithm with Wilkinson’s shift. Japan J. Indust. Appl. Math. 32, 465–487 (2015). https://doi.org/10.1007/s13160-015-0171-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0171-y

Keywords

Mathematics Subject Classification

Navigation