Aghsaei H, Dinan NM, Moridi A, Asadolahi Z, Delavar M, Fohrer N, Wagner PD (2020) Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment 712:136449
CAS
PubMed
Article
Google Scholar
Almendinger JE, Leete JH (1998) Peat characteristics and groundwater geochemistry of calcareous fens in the Minnesota River Basin, USA. Biogeochemistry 43(1):17–41
CAS
Article
Google Scholar
Arpe K, Leroy SA (2007) The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled. Quaternary International 173:144–152
Article
Google Scholar
Arpe K, Leroy SAG, Lahijani H, Khan V (2012) Impact of the European Russia drought in 2010 on the Caspian Sea level. Hydrology and Earth System Science 16:19–27
Article
Google Scholar
Bahmaniar MA, Ranjbar GA, Ahamafian SH (2007) Effects of N and K applications on agronomic characteristics of two Iranian and landrace rice (Oryza sativa L.) cultivars. Journal of Biological Science 10(6):880–886
CAS
Google Scholar
Baker AG, Cornelissen P, Bhagwat SA, Vera FW, Willis KJ (2016) Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores. Methods in Ecology and Evolution 7(11):1273–1281
Article
Google Scholar
Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecological Monographs 81:169–193
Article
Google Scholar
Bauer A, Black AL (1994) Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal 58(1):185–193
Article
Google Scholar
Bengtsson L, Enell M (1986) Chemical analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. John Wiley & Sons Ldt, Chichester, pp 423–451
Google Scholar
Beni AN, Lahijani H, Harami RM, Arpe K, Leroy SAG, Marriner N, Berberian M, Andrieu-Ponel V, Djamali M, Mahboubi A, Reimer PJ (2013) Caspian Sea level changes during the last millennium: historical and geological evidences from the south Caspian Sea. Climate of the Past 9:1645–1665
Article
Google Scholar
Bertini A (2003) Early to Middle Pleistocene changes of the Italian flora and vegetation in the light of a chronostratigraphic framework. II Quaternario 16(1):19–36
Google Scholar
Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr Friedrich Pfeil
Biglari F, Jahani V (2011) The pleistocene human settlement in Gilan, Southwest Caspian Sea: recent research. Eurasian Prehistory 8(1–2):3–28
Google Scholar
Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5:512–518
Article
Google Scholar
Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG (ed.), New Techniques in Sediment Core Analysis. Geological Society, London, Special Publications 267(1): 51–63
Crowley TJ, Lowery TS (2000) How warm was the medieval warm period?. AMBIO: A Journal of the Human Environment 29(1):51–54
Article
Google Scholar
Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. Journal of Sedimentary Research 44(1):242–248
CAS
Google Scholar
Djamali M, Akhani H, Khoshravesh R, Andrieu-Ponel V, Ponel P, Brewer S (2011) Application of the global bioclimatic classification to Iran: implications for understanding the modern vegetation and biogeography. Ecol Mediterr 37(1):91–114
Article
Google Scholar
Djamali M, Beaulieu JLde, Campagne P, Andrieu-Ponel V, Ponel P, Leroy SAG, Akhani H (2009) Modern pollen rain-vegetation relationships along a forest-steppe transect in the Golestan National Park, NE Iran. Review of Palaeobotany and Palynology 153(3–4):272–281
Article
Google Scholar
Easterbrook DJ (2016) Using patterns of recurring climate cycles to predict future climate changes. In: Easterbrook DJ (ed) Evidence-Based Climate Science, 2nd edn. Elsevier, Oxford, pp 395–411
Chapter
Google Scholar
Elbert J, Wartenburger R, von Gunten L, Urrutia R, Fischer D, Fujak M, Hamann Y, Greber ND, Grosjean M (2013) Late Holocene air temperature variability reconstructed from the sediments of Laguna Escondida, Patagonia, Chile (45°30′S). Palaeogeography, Palaeoclimatology, Palaeoecology 369:482–492
Article
Google Scholar
Faegri K, Iversen J (1989) Textbook of pollen analysis. (4th ed.) Wiley, 328 pp
Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. The Annual Review of Marine Science 1:119–141
Article
Google Scholar
Giralt S, Rico-Herrero MT, Vega JC, Valero-Garcés BL (2011) Quantitative climate reconstruction linking meteorological, limnological and XRF core scanner datasets: the Lake Sanabria case study, NW Spain. Journal of Paleolimnology 46(3):487–502
Article
Google Scholar
Grimm EC (1987) CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Computer Geoscience 13:13–35
Article
Google Scholar
Gu F, Ramezani E, Alizadeh K, Behling H (2021) Vegetation dynamics, environmental changes and anthropogenic impacts on the coastal hyrcanian forests in Northern Iran. Journal of Coastal Research 37(3):611–619
Google Scholar
Haghani S, Leroy SA (2020) Recent avulsion history of Sefidrud, south west of the Caspian Sea. Quaternary International 540:97–110
Article
Google Scholar
Haghani S, Leroy SA, Khdir S, Kabiri K, Naderi Beni A, Lahijani HAK (2016) An early ‘Little Ice Age’ brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people. The Holocene 26(1):3–16
Article
Google Scholar
Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R (2008) A global map of human impact on marine ecosystems. Science 319:948–952
CAS
PubMed
Article
Google Scholar
Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1):101–110
Article
Google Scholar
Heydarizad M, Raeisi E, Sorí R, Gimeno L (2019) Developing meteoric water lines for Iran based on air masses and moisture sources. Water 11(11):2359. https://doi.org/10.3390/w11112359
CAS
Article
Google Scholar
Higuera PE, Whitlock C, Gage JA (2011) Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of Yellowstone National Park, USA. The Holocene 21(2):327–341
Article
Google Scholar
Hillbrand M, Hadorn P, Cugny C, Hasenfratz A, Galop D, Haas JN (2012) The palaeoecological value of Diporotheca rhizophila ascospores (Diporothecaceae, Ascomycota) found in Holocene sediments from Lake Nussbaumersee, Switzerland. Review of Palaeobotany and Palynology 186:62–68
Article
Google Scholar
Hoogendoorn RM, Boels JF, Kroonenberg SB (2005) Development of the Kura delta, Azerbaijan; a record of Holocene Caspian Sea-level changes. Marine Geology 222:359–380
Article
Google Scholar
Ilyashuk EA, Heiri O, Ilyashuk BP, Koinig KA, Psenner R (2019) The Little Ice Age signature in a 700-year high-resolution chironomid record of summer temperatures in the Central Eastern Alps. Climate Dynamics 52(11):6953–6967
PubMed
Article
Google Scholar
Jafari Sayadi MH, Vahdati K, Mozafari J, Mohajer MRM, Leslie CA (2012) Natural Hyrcanian populations of Persian walnut (Juglans regia L.) in Iran. Acta Horticulturae 948:97–101
Article
Google Scholar
Jeihouni M, Kakroodi AA, Hamzeh S (2019) Monitoring shallow coastal environment using Landsat/altimetry data under rapid sea-level change. Estuarine, Coastal and Shelf Science 224:260–271
Article
Google Scholar
Jankovská V, Komárek J (2000) Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobotanica 35(1):59–82
Article
Google Scholar
Kardavani P (1991) The problems of waters in Iran. Tehran
Kazancı N, Gulbabazadeh T, Leroy SA, Ileri Ö (2004) Sedimentary and environmental characteristics of the Gilan-Mazenderan plain, northern Iran: influence of long-and short-term Caspian water level fluctuations on geomorphology. Journal of Marine Systems 46(1–4):145–168
Article
Google Scholar
Köppen W (1936) Das Geographisches System der Klimate. In: Koppen W, Geiger R (eds.) Handbuch der Klimatologie. Gerbruder Borntraeger, Berlin, 1: 1–44
Krasnozhon GF, Lahijani H, Voropayev GV (1999) Evolution of the delta of the Sefidrud River, Iranian Caspian Sea coast, from space imagery. Mapping Sciences and Remote Sensing 36(4):256–264
Article
Google Scholar
Kroonenberg SB, Badyukova EN, Storms JEA, Ignatov EI, Kasimov NS (2000) A full sea-level cycle in 65 years: barrier dynamics along Caspian shores. Sedimentary Geology 134(3–4):257–274
Article
Google Scholar
Leroy SAG, Kakroodi AA, Kroonenberg S, Lahijani HK, Alimohammadian H, Nigarov A (2013) Holocene vegetation history and sea level changes in the SE corner of the Caspian Sea: relevance to SW Asia climate. Quaternary Science Reviews 70:28–47
Article
Google Scholar
Leroy SAG, Lahijani HAK, Djamali M, Naqinezhad A, Moghadam MV, Arpe K, Shah-Hosseini M, Hosseindoust M, Miller ChS, Tavakoli V, Habibi P, Naderi Beni M (2011) Late Little Ice Age palaeoenvironmental records from the Anzali and Amirkola Lagoons (south Caspian Sea): Vegetation and sea level changes. Palaeogeogr Palaeoclimatol Palaeoecol 302:415–434
Article
Google Scholar
Lindshield SM (2016) Protecting nonhuman primates in peri-urban environments: a case study of Neotropical monkeys, corridor ecology, and coastal economy in the Caribe Sur of Costa Rica. In: Cham S, Ethnoprimatology. Springer, 351–369
Liu L, Lee GA, Jiang L, Zhang J (2007) Evidence for the early beginning (c. 9000 cal. BP) of rice domestication in China: a response. The Holocene 17(8):1059–1068
Article
Google Scholar
Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809
CAS
PubMed
Article
Google Scholar
Lutz J, Pernicka E (1996) Energy dispersive X-ray fluorescence analysis of ancient copper alloys: empirical values for precision and accuracy. Archaeometry 38(2):313–323
CAS
Article
Google Scholar
Mann ME, Zhang Z, Rutherford S (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260
CAS
PubMed
Article
Google Scholar
Medeanic S, Silva MB (2010) Indicative value of non-pollen palynomorphs (NPPs) and palynofacies for palaeoreconstructions: Holocene Peat, Brazil. International Journal of Coal Geology 84(3–4):248–257
CAS
Article
Google Scholar
Moreno A, Valero-Garcés BL, González-Sampériz P et al (2008) Flood response torainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolimnol 40(3):943–961
Article
Google Scholar
Nasrollahzadeh A (2010) Caspian Sea and its ecological challenges. Caspian Journal of Environmental Sciences 8(1):97–104
Google Scholar
Olsen J, Anderson NJ, Leng MJ (2013) Limnological controls on stable isotope records of late-Holocene palaeoenvironment change in SW Greenland: a paired lake study. Quaternary Science Reviews 66:85–95
Article
Google Scholar
Perşoiu A, Ionita M, Weiss H (2019) Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka, BP event - a hypothesis. Climate of the Past 15(2):781–793
Article
Google Scholar
Potts DT (2018) Arboriculture in ancient Iran: Walnut (Juglans regia), plane (Platanus orientalis) and the “Radde dictum.” DABIR 6:101–109
Google Scholar
Qiu Z, Jiang H, Ding J, Hu Y, Shang X (2014) Pollen and phytolith evidence for rice cultivation and vegetation change during the Mid-Late Holocene at the Jiangli site, Suzhou, East China. PLos One 9(1):e86816. https://doi.org/10.1371/journal.pone.0086816
CAS
Article
PubMed
PubMed Central
Google Scholar
Ramezani E, Marvie Mohadjer MR, Knapp HD, Ahmadi H, Joosten H (2008) The late-Holocene vegetation history of the Central Caspian (Hyrcanian) forests of northern Iran. The Holocene 18(2):307–321
Article
Google Scholar
Ramezani E, Mohadjer MRM, Knapp HD, Theuerkauf M, Manthey M, Joosten H (2013) Pollen–vegetation relationships in the central Caspian (Hyrcanian) forests of northern Iran. Review of Palaeobotany and Palynology 189:38–49
Article
Google Scholar
Ramezani E, Mrotzek A, Mohadjer MRM, Kakroodi AA, Kroonenberg SB, Joosten H (2016) Between the mountains and the sea: Late Holocene Caspian Sea level fluctuations and vegetation history of the lowland forests of northern Iran. Quaternary International 408:52–64
Article
Google Scholar
Ravanbakhsh M, Bazdid Vahdati F, Moradi A, Amini T (2013) Flora, life form and chorotypes of coastal sand dune of southwest of Caspian Sea, Gilan province, N, Iran. Journal of Novel Applied Sciences 2(12):666–677
Google Scholar
Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55:1869–1887
CAS
Article
Google Scholar
RStudio Team (2020) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. URL http://www.rstudio.com/
Shariatpanahi M, Zali F, Tarnas S (2013) Surveying biological situation of Anzali pond and it’s custody management strategies along with ecotourism area. Journal of Tourism and Hospitality Research 2(3):73–87
Google Scholar
Shumilovskikh LS, Ferrer A, Schlütz F (2017) Non-pollen palynomorphs notes: 2. Holocene record of Megalohypha aqua-dulces, its relation to the fossil form genus Fusiformisporites and association with lignicolous freshwater fungi. Rev Palaeobot Palynol 246:167–176. https://doi.org/10.1016/j.revpalbo.2017.07.002
Stevenson J, Haberle S (2005) Palaeoworks Technical Papers 5. Macro Charcoal Analysis: A modified technique used by the Department of Archaeology and Natural History. Department of Archaeology & Natural History, Research School of Pacific & Asian Studies, Australian National University, 8pp
Stewart AV (1996) Plantain (Plantago lanceolata)-a potential pasture species. In Proceedings of the Conference-New Zealand Grassland Association: 77–86
Stuiver M, Grootes PM (2000) GISP2 oxygen isotope ratios. Quaternary Research 53(3):277–284
CAS
Article
Google Scholar
Talebi K S, Sajedi T, Pourhashemi M (2014) Forests of Iran. In A Treasure From the Past, a Hope for the Future (vol. 10). Springer
Tang LY, Mao LM, Shu JW, Li CH, Shen CM, Zhou ZZ (2016) An illustrated handbook of Quaternary pollen and spores in China. China Scientific Book Services, Beijing
Google Scholar
Thomson J, Croudace IW, Rothwell RG (2006) A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units. In Rothwell RG (ed.) New Techniques in Sediment Core Analysis, 65–77. Geological Society, London, Special Publication 267
Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of the water content on X‐ray fluorescence core‐scanning measurements in soft marine sediments. Geochem Geophys Geosyst 8(2). https://doi.org/10.1029/2006GC001393
van Geel B (2002) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. V. 3: Terrestrial, algal and silicaceous indicators. Kluwer, Dordrecht, Springer, pp 99–119
Chapter
Google Scholar
Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790
CAS
PubMed
Article
Google Scholar
Worobiec E (2014) Fossil zygospores of Zygnemataceae and other microremains of freshwater algae from two Miocene palaeosinkholes in the Opole region, SW Poland. Acta Palaeobotanica 54(1):113–157
Article
Google Scholar