Skip to main content

Advertisement

Log in

Sedimental Journey: Soil Fertility of Fluvial Islands Increases with Proximity to An Amazonian White-Water River

  • Wetland Soils
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The nutrient content of soils is considered a key productivity factor. Sediment input from Amazonian rivers is one of the natural sources of soil fertility for fluvial islands and riverbank flooded forests. Despite the importance of soil factors for ecosystems, few edaphic studies along fluvial islands sediment-gradients have been undertaken in tropical areas. The current study provides a step forward by describing a mixed water (sediment-poor black water with the input of sediment-rich white water) fluvial archipelago with an emphasis on soil characteristics of seasonally inundated forests. To investigate how geographic distance from a white-water river mouth affects island soil properties, soil chemical and physical attributes, we sampled 61 sites on 35 islands at Jaú and Anavilhanas archipelago. The studied Central Amazon fluvial islands showed high variability in hydromorphic soils properties. In general, the fluvial island soils were acid and with low fertility. Islands from Jaú and other sites closer to the sediment source (Branco River) had higher soil fertility than the Anavilhanas Archipelago islands, which are further away from the sediment source. Our results show that sediment inputs from the Branco River can play an important role in soil properties in a relatively nutrient-poor area, and shed light on the role of biogeochemical processes in the largest freshwater archipelago in the world. Given that soil fertility is often correlated with forest productivity, the results reported here may serve as a baseline to support conservation politics with scientific data for Central Amazonian fluvial island environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and Availability (data transparency)

All data produced from this study are provided in this manuscript.

Code Availability (software application or custom code)

Not applicable.

References

  • Abril G, Martinez J, Artigas L, Moreira-Turcq P, Benedetti M, Vidal L, Meziane T, Kim J, Bernardes M, Savoye N, Deborde J, Souza E, Albéric P, Landim Souza M, Roland F (2013) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–398. https://doi.org/10.1038/nature12797

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Ingram JSI (1989) Tropical Soil Biology and Fertility. Soil Science 157-265. https://doi.org/10.1097/00010694-199404000-00012

  • Beja P, Santos CD, Santana J, Pereira MJ, Marques JT, Queiroz HL, Palmeirim JM (2010) Seasonal patterns of spatial variation in understory bird assemblages across a mosaic of flooded and unflooded Amazonian forests. Biodivers Conserv 19:129–152

    Article  Google Scholar 

  • Bonilla D, Aldana AM, Cárdenas S, Sanchez A (2020) Functional divergence between várzea and igapó forests: A study of functional trait diversity in the Colombian Orinoco Basin. Forests 11:11–1172. https://doi.org/10.3390/f11111172

    Article  Google Scholar 

  • Coley P, Bryant J, Chapin F (1985) Resource Availability and Plant Antiherbivore Defense. Science 230:895–899. https://doi.org/10.1126/science.230.4728.895

    Article  CAS  PubMed  Google Scholar 

  • Costa HC, Peres CA, Abrahams MI (2018) Seasonal dynamics of terrestrial vertebrate abundance between Amazonian flooded and unflooded forests. PeerJ 6:5058. https://doi.org/10.7717/peerj.5058

    Article  Google Scholar 

  • Cunha DFD, Sawakuchi AO (2017) Evolução sedimentar do Arquipélago de Anavilhanas no baixo Rio Negro, Amazônia Central. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil

    Google Scholar 

  • Ferreira Neto GDS, Baccaro FB, Spironello WR, Benchimol M, Fleischer K, Quesada CA, Sousa Gonçalves AL, Pequeno PAL, Barnett APA (2021) Soil fertility and anthropogenic disturbances drive mammal species richness and assemblage composition on tropical fluvial islands. Austral Ecol. https://doi.org/10.1111/aec.13023

    Article  Google Scholar 

  • Finer M, Jenkins CN (2012) Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7:4–35126. https://doi.org/10.1371/journal.pone.0035126

    Article  CAS  Google Scholar 

  • Flores BM, Holmgren M, Xu C, Van Nes EH, Jakovac CC, Mesquita RC, Scheffer M (2017) Floodplains as an Achilles heel of Amazonian forest resilience. Proc Natl Acad Sci 114:4442–4446. https://doi.org/10.1073/pnas.1617988114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filizola N, Guyot JL, Wittmann Martinez H, Oliveira JM (2011) The significance of suspended sediment transport determination on the Amazonian hydrological scenario. Sediment Transport in Aquatic Environments 45:64. https://doi.org/10.5772/19948

    Article  Google Scholar 

  • Forsberg B, Melack JM, Dunne T, Barthem RB, Goulding M, Paiva RC, Weisser S (2017) The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 12(8):e0182254. https://doi.org/10.1371/journal.pone.0182254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furch K, Junk WJ (1997) Physicochemical conditions in the floodplain. The Central Amazonian Floodplain, Floodplain: Ecology of a Pulsing System. Ecological Studies Vol. 126, Springer, Berlin 69–108, 1997

  • Ganzhorn JU, Malcomber S, Andrianantoanina O, Goodman SM (1997) Habitat characteristics and Lemur species richness in Madagascar. Biotropica 29:331–343. https://doi.org/10.1111/j.1744-7429.1997.tb00434.x

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods 5:383–411. https://doi.org/10.2136/sssabookser5.1.2ed.c15

    Article  Google Scholar 

  • Goulding M, Barthem RB, Ferreira EJG (2003) The Smithsonian Atlas of the Amazon. Smithsonian Institution, Washington, p 253

    Google Scholar 

  • Grau O, Peñuelas J, Ferry B, Freycon V, Blanc L, Desprez M, Guitet S (2017) Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Sci Rep 45017:23–27. https://doi.org/10.1038/srep45017

    Article  CAS  Google Scholar 

  • Haugaasen T, Peres CA (2007) Vertebrate responses to fruit production in Amazonian flooded and unflooded forests. Biodivers Conserv 16:4165–4190. https://doi.org/10.1007/s10531-007-9217-z

    Article  Google Scholar 

  • ICMBio (2017) Plano de Manejo do Parque Nacional de Anavilhanas. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Ministério do Meio Ambiente, ICMBio/MMA, Brasília, p 401

  • Irion G, Junk WJ, Mello JASN (1997) The large central Amazonian river floodplains near and geomorphological aspects. In: Junk WJ (ed) The Central Amazon Floodplain: Ecology of a Pulsing System. Springer-Verlag, Berlin pp. 23–46. https://doi.org/10.1007/978-3-662-03416-3_2

  • Johnston CA, Bridgham SD, Schubauer-Berigan JP (2001) Nutrient dynamics in relation to geomorphology of riverine wetlands. Soil Sci Soc Am J 65:557–577

    Article  CAS  Google Scholar 

  • Julião GR, Venticinque EM, Fernandes GW (2018) Influence of Flood Levels on the Richness and Abundance of Galling Insects Associated with Trees from Seasonally Flooded Forests of Central Amazonia, Brazil. Springer, Cham, In Igapó (Black-water flooded forests) of the Amazon Basin (pp. 99–117)

    Book  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The floodpulse concept in river-floodplain systems. Can Spec Publ Fish Aqu Sci 106:110–127

    Google Scholar 

  • Junk WJ, Piedade MTF (1993) Herbaceous plants of the flood plain near Manaus: species diversity and adaptations to the flood pulse. Amazoniana 12:467–484

    Google Scholar 

  • Junk WJ, Piedade MT, Wittmann F, Schöngart J, Parolin P (2010) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management (Vol. 210). Springer Science & Business Media

    Google Scholar 

  • Junk WJ, Piedade MTF, Schongart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640. https://doi.org/10.1007/s13157-011-0190-7

    Article  Google Scholar 

  • Junk WJ (2013) The central Amazon floodplain: ecology of a pulsing system 126. Springer Science & Business Media

    Google Scholar 

  • Kalliola R, Salo J, Puhakka M, Rajasilta M (1991) New Site Formation and Colonizing Vegetation in Primary Succession on the Western Amazon Floodplains. The Journal of Ecology 877-901. https://doi.org/10.2307/2261087

  • Latrubesse EM, Stevaux JC (2015) The Anavilhanas and Mariuá Archipelagos: Fluvial Wonders from the Rio Negro, Amazon Basin. In: Vieira BC, Salgado AAR, Santos LJC. Landscapes and Landforms of Brazil. Dordrecht: Springer Netherlands 157–169. https://doi.org/10.1007/978-94-017-8023-0_14

  • Latrubesse EM, Franzinelli E (2005) The late Quaternary evolution of the Negro River, Amazon, Brazil: Implications for island and floodplain formation in large anabranching tropical systems. Geomorphology 70:372–397

    Article  Google Scholar 

  • Leenheer JA, Santos UDM (1980) Considerações sobre os processos de sedimentação na água preta ácida do Rio Negro (Amazônia Central). Acta Amazon 10:343–357. https://doi.org/10.1590/1809-43921980102343

    Article  CAS  Google Scholar 

  • Macedo M, Castello L (2015) State of the Amazon: Freshwater connectivity and ecosystem health. WWF Living Amazon Initiative, Brasilia

    Google Scholar 

  • Malhi Y, Baker T, Phillips O, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik C, Fiore A, Higuchi N, Killeen T, Laurance S, Laurance W, Lewis S, Montoya L, Monteagudo A, Neill D, Vargas P, Patino S, Pitman N, Quesada C, Salomao R, Silva J, Lezama A, Martinez R, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591. https://doi.org/10.1111/j.1529-8817.2003.00778.x

    Article  Google Scholar 

  • Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050. https://doi.org/10.1002/joc.4420

    Article  Google Scholar 

  • Marinho RR, Filizola Jr, Cremon NP (2020) Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water 1073:4-12. https://doi.org/10.3390/w12041073

  • Meade RH, Nordin CF, Curtis WF, Costa Rodrigues FM, Edmond JM (1979) Transporte de sedimentos no rio Amazonas. Acta Amazon 9:529–547

    Article  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396. https://doi.org/10.1890/02-3128

    Article  Google Scholar 

  • Myster RW (2015) Black-water forests (igapó) vs. white-water forests (várzea) in the Amazon: floristics and physical structure. The Biologist (lima) 13:391–406

    Google Scholar 

  • Montero JC, Latrubesse EM (2013) The igapó of the Rio Negro in central Amazonia: linking late-successional inundation forest with fluvial geomorphology. J S Am Earth Sci 46:137–149. https://doi.org/10.1016/j.jsames.2013.05.009

    Article  Google Scholar 

  • Montero JC, Piedade MTF, Wittmann F (2014) Floristic variation across 600 km of inundation forests (igapó) along the Rio Negro, Central Amazonia. Hydrobiologia 729:229–246. https://doi.org/10.1007/s10750-012-1381-9

    Article  CAS  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/s0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Oksanen J (2013) Multivariate Analysis of Ecological Communities in R: Vegan Tutorial. http://vegan.r-forge.r-project.org. Accessed 13 Aug 2020

  • Olsen RS (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate 939. US Dept. Agric Stat

    Google Scholar 

  • Osterkamp W (1998) Processes of fluvial island formation, with examples from Plum Creek, Colorado and Snake river, Idaho. Wetlands 18:530–545. https://doi.org/10.1007/bf03161670

    Article  Google Scholar 

  • Peres CA (1997) Primate community structure at twenty western Amazonian flooded and unflooded forests. J Trop Ecol 13:381–405. https://doi.org/10.1017/s0266467400010580

    Article  Google Scholar 

  • Peres CA (2008) Soil fertility and arboreal mammal biomass in tropical forests. Trop for Commun Ecol 349:364

    Google Scholar 

  • Piedade MTF, Junk WJ, Adis J, Parolin P (2005) Ecologia, zonação e colonização da vegetação arbórea das Ilhas Anavilhanas. Pesquisas, Botânica 56:117–143

    Google Scholar 

  • Pleysier JL, Juo ASR (1980) A single-extraction method using silver-thiourea for measuring exchangeable cations and effective CEC in soils with variable charges. Soil Sci 129:205–211. https://doi.org/10.1097/00010694-198004000-00002

    Article  CAS  Google Scholar 

  • Prance G (1979) Notes on the Vegetation of Amazonia III. The Terminology of Amazonian Forest Types Subject to Inundation. Brittonia 31:26–38. https://doi.org/10.2307/2806669

    Article  Google Scholar 

  • Quesada C, Lloyd J, Schwarz M, Patiño S, Baker T, Czimczik C, Fyllas N, Martinelli L, Nardoto G, Schmerler J, Santos A, Hodnett M, Herrera R, Luizão F, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand W, Geilmann H, Moraes Filho J, Carvalho F, Araujo Filho R, Chaves J, Cruz Junior O, Pimentel T, Paiva R (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541. https://doi.org/10.5194/soil-6-53-2020

    Article  CAS  Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440. https://doi.org/10.5194/bg-8-1415-2011

    Article  CAS  Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera Almeida R (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246. https://doi.org/10.5194/soil-6-53-2020

    Article  CAS  Google Scholar 

  • Radambrasil (1978) Levantamento dos Recursos Naturais, Ministério das minas e energia, Departamento nacional da produção mineral. Folha SA-20 Manaus. DNPM/Projeto Radambrasil, Rio de Janeiro

    Google Scholar 

  • R Core Team (2019) R : A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org. Accessed 13 Aug 2020

  • Ríos-Villamizar EA, Adeney JM, Piedade MTF, Junk WJ (2020) New insights on the classification of major Amazonian river water types. Sustainable Water Resources Management 6:1–16. https://doi.org/10.1007/s40899-020-00440-5

    Article  Google Scholar 

  • Rutledge JM, Chow-Fraser P (2019) Landscape characteristics driving spatial variation in total phosphorus and sediment loading from sub-watersheds of the Nottawasaga River, Ontario. J Environ Manage 234:357–366

    Article  CAS  Google Scholar 

  • Salati E, Marques J (1984) Climatology of the Amazon region. In The Amazon, pp. 85–126. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6542-3_4

  • Scabin AB, Costa FRC, Schöngart J (2012) The spatial distribution of illegal logging in the Anavilhanas archipelago (Central Amazonia) and logging impacts on species. Environ Conserv 39:111–121. https://doi.org/10.1017/s0376892911000610

    Article  Google Scholar 

  • Shepherd UL (1998) A Comparison of Species Diversity and Morphological Diversity across the North American Latitudinal Gradient 25:19–29. https://doi.org/10.1046/j.1365-2699.1998.251172.x

    Article  Google Scholar 

  • Sioli H (1968) Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana 1:267–277

    Google Scholar 

  • Souza Filho PWM, Paradella WR, Souza Jr, Valeriano C, Miranda FP (2006) Sensoriamento Remoto e recursos naturais da Amazônia. Ciência e Cultura. 58:37-41

  • Targhetta N, Kesselmeier J, Wittmann F (2015) Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobot 50:185–205. https://doi.org/10.1007/s12224-015-9225-9

    Article  Google Scholar 

  • Tiberti R, Tartari GA, Marchetto A (2010) Geomorphology and hydrochemistry of 12 Alpine lakes in the Gran Paradiso National Park, Italy. J Limnol 69:242–256

    Article  Google Scholar 

  • Varanka S, Hjort J, Luoto M (2015) Geomorphological factors predict water quality in boreal rivers. Earth Surf Proc Land 40:1989–1999

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298. https://doi.org/10.2307/1939481

    Article  CAS  Google Scholar 

  • Williams SE, Marsh H (1998) Changes in small mammal assemblage structure across a rain forest/open forest ecotone. J Trop Ecol 14:187–198. https://doi.org/10.1017/s0266467498000157

    Article  Google Scholar 

  • Wittmann F, Junk WJ (2016) The Amazon river basin. The Wetland book II: Distribution, description and conservation 1-16. https://doi.org/10.1007/978-94-007-6173-5_83-1

  • Zhang ZS, Song XL, Lu XG, Xue ZS (2013) Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls. J Soils Sediments 13:1043–1051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We had the material support from the Thematic Laboratory of Soils and Plants (INPA) and the logistic support from ICMBio (permit numbers 55180-1 and 59367-1). Special thanks to Dr. Orlando Cruz and Jonas Souza Filho for instructions to performing soil analysis. We acknowledge the Amazonian Mammal Research Group. GDSFN thanks the National Council for Scientific and Technological Development [130817/2016-3], CAPES for graduate program support and The National Institute of Amazonian Research. FBB is continuously supported by a CNPq grant (313986/2020-7).

Funding

This study was funded by The Rufford Foundation (grant number 20754- 1 to GSFN) and Idea Wild.

Author information

Authors and Affiliations

Authors

Contributions

GDSFN wrote the first draft of the manuscript. All authors read and approved the final manuscript. GDSFN conducted field sampling. GDSFN, AB and FBB conceived the study. GDSFN, ASF, and EG performed laboratory analysis. GDSFN, CAQ, and WRS supported the study. RO helped with methodology. GDSFN and FBB performed data analysis.

Corresponding author

Correspondence to Gilson de Souza Ferreira Neto.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval

This study was approved by the Chico Mendes Institute for Biodiversity Conservation (ICMBio), (permit numbers 55180–1 and 59367–1).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 454 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Ferreira Neto, G., Baccaro, F.B., Quesada, C.A.N. et al. Sedimental Journey: Soil Fertility of Fluvial Islands Increases with Proximity to An Amazonian White-Water River. Wetlands 41, 104 (2021). https://doi.org/10.1007/s13157-021-01506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-021-01506-6

Keywords

Navigation