Skip to main content

Advertisement

Log in

Feedbacks of Alpine Wetlands on the Tibetan Plateau to the Atmosphere

  • Wetlands and Climate Change
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The alpine wetlands of the Tibetan Plateau (TP) contribute 30%–40% of China’s natural wetlands, and they are experiencing changes in climate, i.e. warming of 0.26 °C 10 yr−1 (since the 1950s), as well as considerable human impacts. Consequently, alpine wetland extent show strong response to these impacts in most part, a reduction since the 1970s, followed by a recovery since the 2000s. In the eastern TP, they suffered stronger human regulations in Zoige mires, i.e. decades’ drainage and recent restoration. These alpine wetlands have long been considered as a vital CH4 source, while inventories and model simulations estimated these wetlands emit roughly 1 Tg CH4-C yr−1 and predicted an increase due to increased temperature and recovery of wetland extent. The alpine wetlands are generally a CO2 sink of roughly 15.8 Tg CO2 yr−1, mitigating half of their emitted CH4, and satellite-based observations of vegetation greening have observed that their plants took more CO2 from the atmosphere. Furthermore, the alpine wetlands provide a biophysical cooling effect, due to higher evaporative energy loss during early growing seasons. Variations in both climate changes and human influences have been well documented and indicate that these alpine wetlands provide vital feedbacks to the climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology 21:4570–4587

    PubMed  Google Scholar 

  • Avis CA, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geoscience 4:444–448

    CAS  Google Scholar 

  • Bai X, Wei J, Xie H (2017) Characteristics of wetness/dryness variation and their influences in the Three-River headwaters region. Acta Ecologica Sinica 37:8397–8410

    Google Scholar 

  • Baldocchi D, Knox S, Dronova I, Verfaillie J, Oikawa P, Sturtevant C, Matthes JH, Detto M (2016) The impact of expanding flooded land area on the annual evaporation of rice. Agricultural and Forest Meteorology 223:181–193

    Google Scholar 

  • Cao SK, Cao GC, Feng Q, Han GZ, Lin YY, Yuan J, Wu FT, Cheng SY (2017) Alpine wetland ecosystem carbon sink and its controls at the Qinghai Lake. Environment and Earth Science 76: 210

  • Chen H, Zhu Qa, Peng C, Wu N, Wang Y, Fang X, Jiang H, Xiang W, Chang J, Deng X, Yu G (2013a) Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate. Global Change Biology 19:19–32

    PubMed  Google Scholar 

  • Chen H, Zhu QA, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH (2013b) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan plateau. Global Change Biology 19:2940–2955

    PubMed  Google Scholar 

  • Chen H, Yang G, Peng CH, Zhang Y, Zhu D, Zhu QA, Hu J, Wang M, Zhan W, Zhu EX, Bai ZZ, Li W, Wu N, Wang YF, Gao YH, Tian JQ, Kang XM, Zhao XQ, Wu JH (2014) The carbon stock of alpine peatlands on the Qinghai-Tibetan plateau during the Holocene and their future fate. Quaternary Science Reviews 95:151–158

    Google Scholar 

  • Chen X, Wang G, Zhang T, Mao T, Wei D, Song C, Hu Z, Huang K (2017) Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region. The Science of the Total Environment 601-602:1389–1399

    CAS  PubMed  Google Scholar 

  • Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, Jetten MSM, de Jong AEE, Meisel OH, Rasigraf O, Slomp CP, in’t Zandt MH, Dolman AJ (2018) Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics 56:207–250

    Google Scholar 

  • Ding W, Cai Z, Wang D (2004) Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment 38:751–759

    CAS  Google Scholar 

  • Ding JZ, Yang T, Zhao YT, Liu D, Wang XY, Yao YT, Peng SS, Wang T, Piao SL (2018) Increasingly important role of atmospheric aridity on Tibetan alpine grasslands. Geophysical Research Letters 45:2852–2859

    Google Scholar 

  • Editorial Board of Vegetation Map of China, Chinese Academy of Sciences (2001) Vegetation Map of the People’s Republic of China. Environmental and Ecological Science Data Center for West China, Beijing

  • Editorial Board of Wetland Flora of China, Chinese Academy of Sciences (1999) Wetland Flora of China. Science Press of China, Beijing

  • Gao J, Li XL (2016) Degradation of frigid swampy meadows on the Qinghai-Tibet plateau: current status and future directions of research. Progress in Physical Geography 40:794–810

    Google Scholar 

  • Guo AH, Wang LN, Li FX (2010) Simulation of wetland extent on regional climate in Sanjiangyuan, Tibet. Climate and Environment Research 15:743–755

    Google Scholar 

  • Hao YB, Cui XY, Wang YF, Mei XR, Kang XM, Wu N, Luo P, Zhu D (2011) Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetlands 31:413–422

    Google Scholar 

  • He J, Yang K (2011) China meteorological forcing dataset. Cold and Arid Regions Science Data Center, Lanzhou

    Google Scholar 

  • Hemes KS, Eichelmann E, Chamberlain SD, Knox SH, Oikawa PY, Sturtevant C, Verfaillie J, Szutu D, Baldocchi DD (2018) A unique combination of aerodynamic and surface properties contribute to surface cooling in restored wetlands of the Sacramento-san Joaquin Delta, California. Journal of Geophysical Research – Biogeosciences 123:2072–2090

    Google Scholar 

  • Huang L, Cao W, Xu X, Fan J, Wang J (2018) The ecological effects of ecological security barrier protection and construction project in Tibet plateau. Journal of Natural Resources 33:398–411

    Google Scholar 

  • Ji LL, Shen SH, Guo AH (2011) Simulation using RegCM3 to explore the wetland extent variation in Sanjiangyuan on regional climate. Pratacultural Science. 28(3): 365-371 (In Chinese with English Abstract).

  • Jin HJ, Wu J (1999) Estimation of CH4 emission from Tibetan wetlands. Chinese Science Bulletin 44:1758–1762

    Google Scholar 

  • Jin ZN, Zhuang QL, He JS, Zhu XD, Song WM (2015) Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan plateau from 1979 to 2100. Environmental Research Letters 10:16

    Google Scholar 

  • Kai X, Kong C, Liu J, Yong W (2010) Using methane dynamic model to estimate methane emission from natural wetlands in China, 18th International Conference on Geoinformatics, Beijing, 1-4.

  • Kuang XX, Jiao JJ (2016) Review on climate change on the Tibetan plateau during the last half century. Journal of Geophysical Research-Atmospheres 121:3979–4007

    Google Scholar 

  • Lei K, Zhang MX (2005) The wetland resources in China and the conservation advices. Wetland Science 3:81–86 (In Chinese with English abstract)

    Google Scholar 

  • Li TT, Zhang Q, Cheng ZG, Ma ZF, Liu J, Luo Y, Xu JJ, Wang GC, Zhang W (2016) Modeling CH4 emissions from natural wetlands on the Tibetan plateau over the past 60 years: influence of climate change and wetland loss. Atmosphere 7:15

    Google Scholar 

  • Li SY, Bush RT, Santos IR, Zhang QF, Song KS, Mao R, Wen ZD, Lu XX (2018) Large greenhouse gases emissions from China's lakes and reservoirs. Water Research 147:13–24

    CAS  PubMed  Google Scholar 

  • Li TT, Li HL, Zhang Q, Ma ZF, Yu LF, Lu YY, Niu ZG, Sun WJ, Liu J (2019) Prediction of CH4 emissions from potential natural wetlands on the Tibetan plateau during the 21st century. The Science of the Total Environment 657:498–508

    CAS  PubMed  Google Scholar 

  • Lian L, Shu J, Li C (2009) The impacts of grassland degradation on regional climate over the origin area of three rivers in Qinghai-Tibet plateau, China. Acta Meteorologica Sinica 67:580–590

    Google Scholar 

  • Luan JW, Liu SR, Wu JH, Wang M, Yu Z (2018) The transient shift of driving environmental factors of carbon dioxide and methane fluxes in Tibetan peatlands before and after hydrological restoration. Agricultural and Forest Meteorology 250:138–146

    Google Scholar 

  • Ma Y (2006) Simulation of the variation of wetland extent in Sanjiangyuan on regional climate. Lanzhou University, Gansu,China (PhD Thesis).

  • Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T, Braendle M, Chen FH, Coners H, Foken T, Gerken T, Graf HF, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, Kuzyakov Y, Lai ZP, Lehnert L, Leuschner C, Li XG, Liu JQ, Liu SB, Ma YM, Miehe S, Mosbrugger V, Noltie HJ, Schmidt J, Spielvogel S, Unteregelsbacher S, Wang Y, Willinghofer S, Xu XL, Yang YP, Zhang SR, Opgenoorth L, Wesche K (2019) The Kobresia pygmaea ecosystem of the Tibetan highlands - origin, functioning and degradation of the world's largest pastoral alpine ecosystem Kobresia pastures of Tibet. The Science of the Total Environment 648:754–771

    CAS  PubMed  Google Scholar 

  • Mu CC, Zhang TJ, Wu QB, Peng XQ, Zhang P, Yang YZ, Hou YD, Zhang XK, Cheng GD (2016a) Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan plateau. Journal of Limnology 75:313–319

    Google Scholar 

  • Mu XJ, Zhao YX, Rao S, Huang Q, Chai HX (2016b) Changes of ecosystem structure in Qinghai-Tibet plateau ecological barrier area during recent ten years. Acta Scientiarum Naturalium Universitatis Pekinensis 52:279–286

    Google Scholar 

  • Mu CC, Abbott BW, Zhao Q, Su H, Wang SF, Wu QB, Zhang TJ, Wu XD (2017) Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan plateau. Geophysical Research Letters 44:8945–8952

    CAS  Google Scholar 

  • Niu Z, Zhang H, Wang X (2012) Mapping wetland changes in China between 1978 and 2008. Chinese Science Bulletin 57:1400–1411

    Google Scholar 

  • Niu B, He Y, Zhang X, Du M, Shi P, Sun W, Zhang L (2017) CO2 exchange in an alpine swamp meadow on the central Tibetan plateau. Wetlands 37:525–543

    Google Scholar 

  • Piao S, Nan H, Huntingford C, Ciais P, Friedlingstein P, Sitch S, Peng S, Ahlström A, Canadell JG, Cong N (2014) Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications 5:5018

    CAS  PubMed  Google Scholar 

  • Plaza C, Pegoraro E, Bracho R, Celis G, Crummer KG, Hutchings JA, Hicks Pries CE, Mauritz M, Natali SM, Salmon VG, Schädel C, Webb EE, Schuur EAG (2019) Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nature Geoscience 12:627–631

    CAS  Google Scholar 

  • Qiao BJ, Zhu LP, Yang RM (2019) Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan plateau. Remote Sensing of Environment 222:232–243

    Google Scholar 

  • Qu B, Aho KS, Li CL, Kang SC, Sillanpaa M, Yan FP, Raymond PA (2017) Greenhouse gases emissions in rivers of the Tibetan plateau. Scientific Reports 7:8

    Google Scholar 

  • Shi P, Sun X, Xu L, Zhang X, He Y, Zhang D, Yu G (2006) Net ecosystem CO2 exchange and controlling factors in a steppe—Kobresia meadow on the Tibetan plateau. Science in China Series D: Earth Sciences 49:207–218

    CAS  Google Scholar 

  • Song WM, Wang H, Wang GS, Chen LT, Jin ZN, Zhuang QL, He JS (2015) Methane emissions from an alpine wetland on the Tibetan plateau: neglected but vital contribution of the nongrowing season. Journal of Geophysical Research – Biogeosciences 120:1475–1490

    CAS  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Alexander LV, Allen SK, Bindoff NL, Bréon FM, Church JA, Cubasch U, Emori S (2013) Technical summary. In: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Computational Geometry 18:95–123

    Google Scholar 

  • Tapley BD, Watkins MM, Flechtner F, Reigber C, Bettadpur S, Rodell M, Sasgen I, Famiglietti JS, Landerer FW, Chambers DP, Reager JT, Gardner AS, Save H, Ivins ER, Swenson SC, Boening C, Dahle C, Wiese DN, Dobslaw H, Tamisiea ME, Velicogna I (2019) Contributions of GRACE to understanding climate change. Nature Climate Change 9:358–369

    Google Scholar 

  • Tibetan Plateau Scientific Expedition, C.A.o.S (1988) Tibetan Flora. Science Press of China, Beijing

    Google Scholar 

  • Wan W, Xiao PF, Feng XZ, Li H, Ma RH, Duan HT, Zhao LM (2014) Monitoring lake changes of Qinghai-Tibetan plateau over the past 30 years using satellite remote sensing data. Chinese Science Bulletin 59:1021–1035

    Google Scholar 

  • Wang G, Li Y, Wang Y, Chen L (2007a) Typical alpine wetland system changes on the Qinghai-Tibet plateau in recent 40 years. Acta Geographica Sinica 62:481–491

    Google Scholar 

  • Wang GX, Li YS, Wang YB, Chen L (2007b) Typical alpine wetland system changes on the Qinghai-Tibet Plateau in recent 40 years. Acta Geographica Sinica 62:481–491

    Google Scholar 

  • Wang X, Cheng G, Zhao T, Zhang X, Zhu L, Huang L (2017) Assessment on protection and construction of ecological safety shelter for Tibet. Bulletin of the Chinese Academy of Sciences 32:29–34

    Google Scholar 

  • Wei D, Wang XD (2017a) Recent climatic changes and wetland expansion turned Tibet into a net CH4 source. Climatic Change 144:657–670

    Google Scholar 

  • Wei D, Wang XD (2017b) Uncertainty and dynamics of natural wetland CH4 release in China: research status and priorities. Atmospheric Environment 154:95–105

    CAS  Google Scholar 

  • Wei D, Xu R, Tarchen T, Dai DX, Wang YS, Wang YH (2015) Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan plateau: evidence from two in situ measurements at 4758 and 4320m above sea level. Journal of Geophysical Research – Biogeosciences 120:1741–1750

    CAS  Google Scholar 

  • Wei D, Zhang XK, Wang XD (2017) Strengthening hydrological regulation of China's wetland greenness under a warmer climate. Journal of Geophysical Research – Biogeosciences 122:3206–3217

    Google Scholar 

  • Wei D, Li T, Wang X (2019) Overestimation of China's marshland CH4 release. Global Change Biology 25:2515–2517

    PubMed  Google Scholar 

  • Xiao D, Deng L, Dong-Gill K, Huang C, Tian K (2019) Carbon budgets of wetland ecosystems in China. Global Change Biology 25: 2061– 2076.

  • Xu X, Tian H (2012) Methane exchange between marshland and the atmosphere over China during 1949–2008. Global Biogeochemical Cycles 26, GB2006, doi:https://doi.org/10.1029/2010GB003946

  • Xue ZS, Zhang ZS, Lu XG, Zou YC, Lu YL, Jiang M, Tong SZ, Zhang K (2014) Predicted areas of potential distributions of alpine wetlands under different scenarios in the Qinghai-Tibetan plateau, China. Global and Planetary Change 123:77–85

    Google Scholar 

  • Xue ZS, Lyu XG, Chen ZK, Zhang ZS, Jiang M, Zhang K, Lyu YL (2018) Spatial and temporal changes of wetlands on the Qinghai-Tibetan plateau from the 1970s to 2010s. Chinese Geographical Science 28:935–945

    Google Scholar 

  • Xue Z, Hou G, Zhang Z, Lyu X, Jiang M, Zou Y, Shen X, Wang J, Liu X (2019) Quantifying the cooling-effects of urban and peri-urban wetlands using remote sensing data: case study of cities of Northeast China. Landscape and Urban Planning 182:92–100

    Google Scholar 

  • Yan FP, Sillanpaa M, Kang SC, Aho KS, Qu B, Wei D, Li XF, Li CL, Raymond PA (2018) Lakes on the Tibetan plateau as conduits of greenhouse gases to the atmosphere. Journal of Geophysical Research – Biogeosciences 123:2091–2103

    CAS  Google Scholar 

  • Yang G, Chen H, Wu N, Tian JQ, Peng CH, Zhu QA, Zhu D, He YX, Zheng QY, Zhang CB (2014) Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biology and Biochemistry 78:83–89

    CAS  Google Scholar 

  • Yang G, Peng C, Chen H, Dong F, Wu N, Yang Y, Zhang Y, Zhu D, He Y, Shi S, Zeng X, Xi T, Meng Q, Zhu Q (2017) Qinghai–Tibetan plateau peatland sustainable utilization under anthropogenic disturbances and climate change. Ecosystem Health and Sustainability 3:e01263

    Google Scholar 

  • Yang GB, Peng YF, Olefeld D, Chen YL, Wang GQ, Li F, Zhang DY, Wang J, Yu JC, Liu L, Qin SQ, Sun TY, Yang YH (2018) Changes in methane flux along a permafrost thaw sequence on the Tibetan plateau. Environmental Science & Technology 52:1244–1252

    CAS  Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan plateau and surroundings. Nature Climate Change 2:663–667

    Google Scholar 

  • Yao T, Chen F, Cui P, Ma Y, Xu B, Zhu L, Zhang F, Wang W, Ai L, Yang X (2017a) From Tibetan plateau to third pole and pan-third pole. Bulletin of the Chinese Academy of Sciences 32:924–931

    Google Scholar 

  • Yao T, Piao S, Shen M, Gao J, Yang W, Zhang G, Lei Y, Gao Y, Zhu L, Xu B, Yu W, Li S (2017b) Chained impacts on modern environment of interaction between westerlies and indian monsoon on Tibetan plateau. Bulletin of the Chinese Academy of Sciences 32:976–984

    Google Scholar 

  • Yu X, Qigang J, Wenqing LI, Lei BAI (2009) Landscape spatial patterns changes of the wetland in Qinghai-Tibet plateau. Ecology and Environmental Sciences 18:1010–1015

    Google Scholar 

  • Yu L, Wang H, Wang G, Song W, Huang Y, Li S-G, Liang N, Tang Y, He J-S (2013) A comparison of methane emission measurements using eddy covariance and manual and automated chamber-based techniques in Tibetan plateau alpine wetland. Environmental Pollution 181:81–90

    CAS  PubMed  Google Scholar 

  • Zhang X, Jiang H (2014) Spatial variations in methane emissions from natural wetlands in China. International journal of Environmental Science and Technology 11:77–86

    Google Scholar 

  • Zhang F, Anhua L, Yingnian L, Liang Z, Qinxue W, Mingyuan D (2008) CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan plateau, China. Acta Ecologica Sinica 28:453–462

    CAS  Google Scholar 

  • Zhang X, Yang Y, Piao S, Bao W, Wang S, Wang G, Sun H, Luo T, Zhang Y, Shi P, Liang E, Shen M, Wang J, Gao Q, Zhang Y, Ouyang H (2015) Ecological change on the Tibetan plateau. Chinese Science Bulletin 60:3048–3056

    Google Scholar 

  • Zhang GQ, Yao TD, Piao SL, Bolch T, Xie HJ, Chen DL, Gao YH, O'Reilly CM, Shum CK, Yang K, Yi S, Lei YB, Wang WC, He Y, Shang K, Yang XK, Zhang HB (2017a) Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades. Geophysical Research Letters 44:252–260

    Google Scholar 

  • Zhang HH, Li L, Chen BR, Xiao HB (2017b) CO2 exchange in an alpine wetland on the Tibetan plateau and its controlling factors. Journal of Glaciology and Geocryology 39:54–60

    Google Scholar 

  • Zhao L, Li J, Xu S, Zhou H, Li Y, Gu S, Zhao X (2010) Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan plateau. Biogeosciences 7:1207–1221

    CAS  Google Scholar 

  • Zhu D, Chen H, Zhu QA, Wu Y, Wu N (2012) High carbon dioxide evasion from an alpine peatland lake: the central role of terrestrial dissolved organic carbon input. Water, Air, and Soil Pollution 223:2563–2569

    CAS  Google Scholar 

  • Zhu QA, Peng CH, Liu JX, Jiang H, Fang XQ, Chen H, Niu ZG, Gong P, Lin GH, Wang M, Wang H, Yang YZ, Chang J, Ge Y, Xiang WH, Deng XW, He JS (2016) Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports 6:7

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the editors and two referees, especially Prof. Ab Grootjans, for their comments on our manuscript. We thank Dr. Tanguang Gao for his help with this manuscript. The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20020401), the Second Tibetan Plateau Scientific Exploration (2019QZKK0402), the National Natural Scientific Foundation of China (41671102; 41971145) and West Light Scholar of Chinese Academy of Sciences supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

(1) The alpine wetlands experienced “shrink-then-recovery” since the 1970s.

(2) The alpine wetlands emit roughly 1 Tg CH4-C yr−1 but warming strengthened the emission.

(3) Alpine wetlands are a net CO2 sink, mitigating half of the CH4 in global warming potential.

(4) Alpine wetlands also provide biophysical cooling effect, both at local and regional scale.

Electronic supplementary material

ESM 1

(DOCX 1819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Zhao, H., Huang, L. et al. Feedbacks of Alpine Wetlands on the Tibetan Plateau to the Atmosphere. Wetlands 40, 787–797 (2020). https://doi.org/10.1007/s13157-019-01220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-019-01220-4

Keywords

Navigation