Skip to main content

Advertisement

Log in

Recent climatic changes and wetland expansion turned Tibet into a net CH4 source

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Methane (CH4) is the second largest contributor to the greenhouse effect. However, it remains unclear to what extent the CH4 cycle acts as a feedback to climate changes, due to insufficient observational constraints and poor knowledge of wetland extent dynamics. The Tibetan Plateau (TP), which has an average elevation of 4000+ m above sea level, contains one-third of China’s natural wetlands. Rapid climate warming (i.e., ~ 0.5 °C per decade since the 1960s) and increasing precipitation in the region have caused wetlands to dry up and then expand, especially since the 2000s. In this study, we assessed the uncertainty and temporal variation of the CH4 budget during 1979–2012 using a biogeochemical model, in situ measurements and dynamic wetland maps. The results showed that the drying up of wetlands from the 1980s to 1990s completely counteracted the rising CH4 emission rates (0.75 ± 0.18 and 0.77 ± 0.19 Tg CH4 year−1 in the 1980s and 1990s, respectively). However, recent precipitation-induced wetland expansion enhanced emissions to 0.96 ± 0.21 Tg CH4 year−1 in the 2000s, which exceeded the rate of CH4 uptake (0.74 ± 0.06 Tg CH4 year−1 in the 2000s). A nonlinear role played by wetland extent in the CH4 budget was revealed, suggesting that there is a need to incorporate wetland extent dynamics over a longer period into model simulations to understand the variation in wetland CH4 release during past decades. Furthermore, the results also indicate that more hydrological components, e.g., wetland shrinkage and expansion under increasing precipitation and glacial melt, should be taken into consideration when projecting wetland CH4 release on the TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avis CA, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat Geosci 4(7):444–448

    Article  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK et al (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19(5):1325–1346

    Article  Google Scholar 

  • Chen H, Yao SP, Wu N et al (2008) Determinants influencing seasonal variations of CH4 emissions from alpine wetlands in Zoige plateau and their implications. J Geophys Res 113:D12303

    Article  Google Scholar 

  • Chen H, Zhu Q, Peng C et al (2013) Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate. Glob Chang Biol 19(1):19–32

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7(4):357–373

    Article  Google Scholar 

  • Curry CL (2007) Modeling the soil consumption of atmospheric CH4 at the global scale. Global Biogeochem Cy 21(4):GB4012. https://doi.org/10.1029/2006GB002818

  • Deng Y, Cui X, Lüke C et al (2013) Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai–Tibetan Plateau. Env Microbiol Rep 5(4):566–574

    Article  Google Scholar 

  • Deng YC, Cui XY, Hernández M et al (2014) Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing. PLoS One 9(7):e103115

    Article  Google Scholar 

  • Ding W, Cai Z (2007) Methane emission from natural wetlands in China: summary of years 1995–2004 studies. Pedosphere 17(4):475–486

    Article  Google Scholar 

  • Ding W, Cai Z, Wang D (2004) Preliminary budget of CH4 emissions from natural wetlands in China. Atmos Environ 38(5):751–759

    Article  Google Scholar 

  • Editorial Board of Vegetation Map of China, Chinese Academy of Sciences (2001) Vegetation map of the People’s Republic of China (1:1000000). Science Press of China, Beijing

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ et al (2014) Updated high–resolution grids of monthly climatic observations–CRU TS 3. 10 Dataset. Int J Climatol 34(3):623–642

    Article  Google Scholar 

  • He J, Yang K (2011) China meteorological forcing dataset. Cold and Arid Regions Science Data Center at Lanzhou. https://doi.org/10.3972/westdc.002.2014.db

  • Hodson EL, Poulter B, Zimmermann et al (2011) The El Niño-Southern Oscillation and wetland methane interannual variability. Geophys Res Lett 38(8):L08810

    Article  Google Scholar 

  • Jin H, Wu J, Cheng G et al (1999) Methane emissions from wetlands on the Qinghai-Tibet Plateau. Chinese Sci. Bull. 44(24):2282–2286

    Article  Google Scholar 

  • Jin Z, Zhuang Q, He JS et al (2015) Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100. Environ Res Lett 10(8):085007

    Article  Google Scholar 

  • Jørgensen CJ, Johansen KML, Westergaard-Nielsen A et al (2015) Net regional methane sink in High Arctic soils of northeast Greenland. Nat Geosci 8(1):20–23

    Article  Google Scholar 

  • Kaplan JO (2002) Wetlands at the last glacial maximum: distribution and methane emissions. Geophys Res Lett 29(6):3–1–3-4

    Article  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813–823

    Article  Google Scholar 

  • Lau MCY, Stackhouse BT, Layton AC et al (2015) An active atmospheric methane sink in high Arctic mineral cryosols. ISME J 9(8):1880–1891

    Article  Google Scholar 

  • Li L, Li J, Yao X et al (2014) Changes of the three holy lakes in recent years and quantitative analysis of the influencing factors. Quatern Int 349:339–345

    Article  Google Scholar 

  • Li T, Zhang W, Zhang Q et al (2015) Impacts of climate and reclamation on temporal variations in CH4 emissions from different wetlands in China: from 1950 to 2010. Biogeosci Discuss 12(9):7055–7091

    Article  Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742

    Article  Google Scholar 

  • Luan J, Wu J (2014) Gross photosynthesis explains the ‘artificial bias’ of methane fluxes by static chamber (opaque versus transparent) at the hummocks in a boreal peatland. Environ Res Lett 9(10):105005

    Article  Google Scholar 

  • Lutz AF, Immerzeel WW, Shrestha AB et al (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Change 4(7):587–592

    Article  Google Scholar 

  • Melton JR, Wania R, Hodson EL et al (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP). Biogeosciences 10:753–788

    Article  Google Scholar 

  • Niu ZG, Zhang HY, Wang XW et al (2012) Mapping wetland changes in China between 1978 and 2008. Chinese Sci Bull 57(22):2813–2823

    Article  Google Scholar 

  • O'Connor FM, Boucher O, Gedney N et al (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48(4):RG4005

    Article  Google Scholar 

  • Paudel R, Mahowald NM, Hess PGM et al (2016) Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC. Environ Res Lett 11(3):034020

    Article  Google Scholar 

  • Riley WJ, Subin ZM, Lawrence DM et al (2011) Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8(7):1925–1953

    Article  Google Scholar 

  • Schroeder R, McDonald KC, Chapman BD et al (2015) Development and evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data. Remote Sens 7(12):16688–16732

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C et al (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185

    Article  Google Scholar 

  • Song C, Huang B, Richards K et al (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour Res 50(4):3170–3186

    Article  Google Scholar 

  • Song WM, Wang H, Wang GS et al (2015) CH4 emissions from an alpine wetland on the Tibetan Plateau: neglected but vital contribution of non-growing season. J Geophys Res Biogeosci 120(8):1475–1490

    Article  Google Scholar 

  • Stocker BD, Spahni R, Joos F (2014) DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geosci Model Dev 7(6):3089–3110

    Article  Google Scholar 

  • Su F, Zhang L, Ou T et al (2016) Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau, Global Planet. Change 136:82–95

    Google Scholar 

  • Walter BP, Heimann M, Shannon RD et al (1996) A process-based model to derive methane emissions from natural wetlands. Geophys Res Lett 23(25):3731–3734

    Article  Google Scholar 

  • Wang Y, Chen H, Zhu Q et al (2014) Soil methane uptake by grasslands and forests in China. Soil Biol Biochem 74:70–81

    Article  Google Scholar 

  • Wania R, Ross I, Prentice IC (2010) Implementation and evaluation of a new CH4 model within a dynamic global vegetation model: LPJ-WHyMe. Geosci Mod Dev 3(2):565–584

    Article  Google Scholar 

  • Watts JD, Kimball JS, Parmentier FJW et al (2014) A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes. Biogeosciences 11:1961

    Article  Google Scholar 

  • Wei D, Wang X (2017) Uncertainty and dynamics of natural wetland CH4 release in China: research status and priorities. Atmos Environ 154:95–105

    Article  Google Scholar 

  • Wei SG, Dai Y, Liu B et al (2013) A China data set of soil properties for land surface modelling. J Adv Mod Earth Sys 5(2):212–224

    Article  Google Scholar 

  • Wei D, Xu-Ri, Tenzin-Tarchen et al (2015a) Considerable CH4 uptake by alpine grasslands despite the cold climate: in situ measurements on the central Tibetan Plateau, 2008–2013. Glob Chang Biol 21:777–788

    Article  Google Scholar 

  • Wei D, Xu-Ri, Tenzin-Tarchen et al (2015b) Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: evidence from two in situ measurements at 4758 and 4320 m above sea level. J Geophys Res Biogeosci 120(9):1741–1750

    Article  Google Scholar 

  • Xu X and Tian H (2012) CH4 exchange between marshland and the atmosphere over China during 1949–2008. Global Biogeochem Cy 26(2):GB2006. https://doi.org/10.1029/2010GB003946

  • Xu K, Kong C, Liu J et al (2010) Using methane dynamic model to estimate methane emission from natural wetlands in China. Geoinformatics, 18th International Conference on. IEEE 2010:1–4

    Google Scholar 

  • Xu X, Elias DA, Graham DE et al (2015) A microbial functional group−based module for simulating methane production and consumption: application to an incubated permafrost soil. J Geophys Res Biogeosci, 2015 120(7):1315–1333

    Article  Google Scholar 

  • Xu X, Yuan F, Hanson PJ et al (2016) Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosci Diss. https://doi.org/10.5194/bg-2016-37

  • Xue Z, Zhang Z, Lu X et al (2014) Predicted areas of potential distributions of alpine wetlands under different scenarios in the Qinghai-Tibetan Plateau. Glob Planet Chang 123:77–85

    Article  Google Scholar 

  • Yang RM, Zhu LP, Wang JB et al (2017) Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Climat Change 140:621

    Article  Google Scholar 

  • Yao T, Thompson L, Yang W et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2(9):663–667

    Article  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D et al (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507(7493):488–491

    Article  Google Scholar 

  • Zhang X, Jiang H (2014) Spatial variations in methane emissions from natural wetlands in China. Inter J Environ Sci Tech 11(1):77–86

    Article  Google Scholar 

  • Zhang Y, Wang G, Wang Y (2011) Changes in alpine wetland ecosystems of the Qinghai–Tibetan plateau from 1967 to 2004. Environ Monit Assess 180(1–4):189–199

    Article  Google Scholar 

  • Zhang G, Yao T, Xie H et al (2013) Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys Res Lett 40(10):2125–2130

    Article  Google Scholar 

  • Zhang GQ, Yao TD, Shum CK et al (2017) Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys Res Lett. https://doi.org/10.1002/2017GL073773

  • Zhao K (1999) Marshes and swamps of China: a compilation. Science Press of China, Beijing

    Google Scholar 

  • Zhao Y, Liu P, Wang JQ et al (2014) Observation of global background atmospheric concentration in Waliguan, 1991 to 2011. Qinghai Environ 24(1):32–35 (in Chinese with English abstract)

    Google Scholar 

  • Zhu X, Zhuang Q, Chen M et al (2011) Rising methane emissions in response to climate change in northern Eurasia during the 21st century. Environm Res Lett 6(4):045211

    Article  Google Scholar 

  • Zhu Q, Peng C, Chen H et al (2015) Estimating global natural wetland methane emissions using process modelling: spatial-temporal patterns and contributions to atmospheric methane fluctuations. Glob Ecol Biogeogr 24(8):959–972

    Article  Google Scholar 

  • Zhuang Q, Melillo JM, Kicklighter DW et al (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Global Biogeochem Cy 18(3):GB3010

    Article  Google Scholar 

  • Zhuang QL, Chen M, Xu K et al (2013) Response of global soil consumption of atmospheric CH4 to changes in atmospheric climate and nitrogen deposition. Global Biogeochem. Cy. 27(3):650–663

    Article  Google Scholar 

  • Zhuang QL, Zhu XD, He YJ et al (2015) Influences of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004. Environ Res Lett 10:095009. https://doi.org/10.1088/1748-9326/10/9/095009

    Article  Google Scholar 

  • Zobler L (1986) A world soil file for global climate modelling. NASA Technical Memorandum, No. 87802. NASA Goddard Institute for Space Studies, New York, U.S.A.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Scientific Foundation of China (41671102, 41571205), the National Key Research and Development Program (2016YFC0502002), and the Young Innovation Foundation of the Institute of Mountain Hazards and Environments, CAS (SDS-QN-1604, SDSQB-2016-02). We thank Dr. Rita Wania for sharing the LPJ-WHyMe code and Prof. Niu Zhenguo for sharing the wetland maps of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Wang.

Electronic supplementary material

ESM 1

(DOCX 1363 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Wang, X. Recent climatic changes and wetland expansion turned Tibet into a net CH4 source. Climatic Change 144, 657–670 (2017). https://doi.org/10.1007/s10584-017-2069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-017-2069-y

Navigation