Skip to main content

Advertisement

Log in

Key Species Superpose the Effect of Species Richness and Species Interaction on Carbon Fluxes in a Restored Minerotrophic Peatland

  • Peatlands
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

In a controlled field experiment, we tested the effect of plant biodiversity on carbon accumulation in a formerly-extracted peatland that was rewetted and re-vegetated. We monitored carbon fluxes in experimental units re-vegetated with different numbers and types of characteristic minerotrophic peatland species, planted in monoculture and mixed treatments. Using measured environmental variables, we modelled the different components of carbon flux (photosynthesis, respiration and methane flux) and simulated the Net Seasonal Carbon Flux for three standard wetness scenarios of each planting treatment. We tested the effect of species and functional group richness, species and functional group identity and species interactions on Net Seasonal Carbon Flux. Our findings did not indicate any significant effect of the richness of species or plant functional groups on carbon accumulation. However, the presence of key species was important; Carex aquatilis, particularly when planted alone, significantly increased carbon accumulation; other graminoid species were not associated with the same effect. Mixed-species treatments did not accumulate more carbon than was expected of the same species when planted in monoculture, providing no evidence for an overall species interaction effect. Our results suggest that in the context of restored minerotrophic peatlands, species identity is more important than species/functional group richness or species-interaction for driving carbon accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adkinson AC, Syed KH, Flanagan LB (2011) Contrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada. J Geophys Res Biogeosci 116(G1)

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: are-evaluation of processes and patterns. Advances in Ecological Research 30:1–67

    CAS  Google Scholar 

  • Alm J, Saarnio S, Nykänen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44(2):163–186

    Google Scholar 

  • Aslan-Sungur G, Lee X, Evrendilek F, Karakaya N (2016) Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate wetland. The Science of the Total Environment 554-555:192–202

    Article  CAS  PubMed  Google Scholar 

  • Bérubé V (2017) Restauration des tourbières minérotrophes : études approfondies des communautés végétales. Ph.D. thesis, Université Laval, Québec. 212 pp.

  • Bérubé V, Rochefort L, Lavoie C (2017) Fen restoration: defining a reference ecosystem using paleoecological stratigraphy and present-day inventories. Botany 95(7):731–750

    Article  Google Scholar 

  • Bonn, A., Allott, T., Evans, M., Joosten, H., & Stoneman, R. (Eds.). (2016). Peatland restoration and ecosystem services: science, policy and practice (ecological reviews). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139177788

    Book  Google Scholar 

  • Brummell ME, Lazcano C, Strack M (2017) The effects of Eriophorum vaginatum on N2O fluxes at a restored, extracted peatland. Ecological Engineering 106:287–295

    Article  Google Scholar 

  • Bubier JL, Bhatia G, Moore TR, Roulet NT, Lafleur PM (2003) Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6(4):353–367

    CAS  Google Scholar 

  • Callaway RM (1997) Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112:143–149

    Article  PubMed  Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, Dordrecht

    Google Scholar 

  • Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity increases ecosystem functioning through interspecific facilitation. Nature 415:426–429

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Annals of Botany 91:455–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL et al (2000) Consequences of changing biodiversity. Nature 405(6783):234–242

    Article  CAS  PubMed  Google Scholar 

  • Chimner RA, Cooper DJ, Patron WJ (2002) Modeling carbon accumulation in Rocky Mountain fens. Wetlands 22:100–110

    Article  Google Scholar 

  • Clymo RS (1965) Experiments on the breakdown of Sphagnum in two bogs. Journal of Ecology 53:747–757

    Article  Google Scholar 

  • Cong WF, van Ruijven J, Mommer L, De Deyn GB, Berendse F, Hoffland E (2014) Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology 102(5):1163–1170

    Article  CAS  Google Scholar 

  • Cooper DJ, MacDonald LH (2000) Restoring the vegetation of mined peatlands in the southern Rocky Mountains of Colorado, USA. Restoration Ecology 8:103–111

    Article  Google Scholar 

  • Coughenour MB (1985) Graminoid responses to grazing by large herbivores: adaptations, exaptations and interacting processes. Annals of the Missouri Botanical Garden 72:852–863

    Article  Google Scholar 

  • Daßler A, Roscher C, Temperton VM, Schumacher J, Schulze ED (2008) Adaptive survival mechanisms and growth limitations of small-stature herb species across a plant diversity gradient. Plant Biology 10:573–587

    Article  PubMed  Google Scholar 

  • Davies G, Hamilton A, Smith A, Legg C (2008) Using visual obstruction to estimate heathland fuel load and structure. International Journal of Wildland Fire 17:380–389

    Article  Google Scholar 

  • de Deyn GB, Cornelissen HC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11:516–531

    Article  PubMed  Google Scholar 

  • de Deyn GB, Shiel RS, Ostle NJ, McNamara NP, Oakley S, Young I, Freeman C, Fenner N, Quirk H, Bardgett RD (2011) Additional carbon sequestration benefits of grassland diversity restoration. Journal of Applied Ecology 48(3):600–608

    Article  Google Scholar 

  • Doherty JM, Callaway JC, Zedler JB (2011) Diversity–function relationships changed in a long-term restoration experiment. Ecological Applications 21(6):2143–2155

    Article  PubMed  Google Scholar 

  • Environment Canada (2019). Canadian Climate Normals 1971–2000. <http://climate.weatheroffice.gc.ca/climate_normals/results_e.html?stnID=5836&prov=&lang=e&dCode=1&dispBack=1&StationName=Rimouski&SearchType=Contains&province=ALL&provBut=&month1=0&month2=12>. Accessed 15 June 2013

  • Farrick KK, Price JS (2009) Ericaceous shrubs on abandoned block-cut peatlands: implications for soil water availability and Sphagnum restoration. Ecohydrology 2(4):530–540

    Article  Google Scholar 

  • Fornara D, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology 96:314–322

    Article  CAS  Google Scholar 

  • Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila ES, Roulet N (2011) Peatlands in the Earth’s 21st century climate system. Environmental Reviews 19:371–396

    Article  CAS  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Graf MD, Rochefort L (2008) Techniques for restoring fen vegetation on cut-away peatlands in North America. Applied Vegetation Science 11(4):521–528

    Article  Google Scholar 

  • Graf MD, Rochefort L (2009) Examining the peat-accumulating potential of fen vegetation in the context of fen restoration of harvested peatlands. Ecoscience 16(2):158–166

    Article  Google Scholar 

  • Graf MD, Rochefort L (2016) A conceptual framework for ecosystem restoration applied to industrial peatlands. Peatland restoration and ecosystems services: science, policy and practice. Ecological reviews of Cambridge University Press, Cambridge, pp 192–213

    Google Scholar 

  • Griffin KO (1997) Paleoecological aspects of the red Lake peatland, northern Minnesota. Canadian Journal of Botany 55:172–192

    Article  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86(6):902–910

    Article  Google Scholar 

  • Günther A, Huth V, Jurasinski G, Glatzel S (2015) The effect of biomass harvesting on greenhouse gas emissions from a rewetted temperate fen. Global Change Biology. Bioenergy 7(5):1092–1106

    Article  CAS  Google Scholar 

  • Hassanpour Fard G (2014) Carbon dynamics in extracted Minerotrophic peatlands: an analysis of the effect of plant biodiversity (unpublished Master’s thesis). University of Calgary, Calgary

    Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG et al (1999) Plant diversity and productivity experiments in European grasslands. Science 286(5442):1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Hector A, Bazeley-White E, Loreau M, Otway S, Schmid B (2002) Overyielding in grassland communities: testing the sampling efect hypothesis with replicated biodiversity experiments. Ecology Letters 5:502–511

    Article  Google Scholar 

  • Heikkinen JE, Elsakov V, Martikainen PJ (2002) Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochemical Cycles 16(4):62-1–62-15

    Article  CAS  Google Scholar 

  • Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. & Troxler, T.G. IPCC. (2013). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, chapter 2. Published: IPCC, Switzerland

  • Hooper DU (1998) The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology 79(2):704–719

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75(1):3–35

    Article  Google Scholar 

  • Hu FS, Davis RB (1995) Postglacial development of a Maine bog and paleoenvironmental implications. Canadian Journal of Botany 73:638–649

    Article  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  PubMed  Google Scholar 

  • Karunen P, Ekman R (1982) Age-dependent content of polymerized lipids in Sphagnum fuscum. Physiologia Plantarum 54:162–166

    Article  CAS  Google Scholar 

  • Ketcheson SJ, Whittington PN, Price JS (2012) The effect of peatland harvesting on snow accumulation, ablation and snow surface energy balance. Hydrological Processes 26(17):2592–2600

    Article  Google Scholar 

  • Kivimäki SK, Yli-petäys M, Tuittila ES (2008) Carbon sink function of sedge and Sphagnum patches in a restored cut-away peatland: increased functional diversity leads to higher production. Journal of Applied Ecology 45:921–929

    Article  Google Scholar 

  • Kubiw H, Hickman M, Vitt DH (1989) The developmental history of peatlands at Muskiki and Marguerite lakes, Alberta. Canadian Journal of Botany 67(12):3534–3533

    Article  Google Scholar 

  • Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2014) Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology 95:123–131

    Article  PubMed  Google Scholar 

  • Laiho R, Finér L (1996) Changes in root biomass after water level drawdown on pine mires in southern Finland. Scandinavian Journal of Forest Research 11:251–260

    Article  Google Scholar 

  • Lamers LPM, Smolders AJP, Roelofs JGM (2002) The restoration of fens in the Netherlands. Hydrobiologia 478:107–130

    Article  Google Scholar 

  • Leva PE, Aguiar MR, Oesterheld M (2009) Underground ecology in a Patagonian steppe: root traits permit identification of graminoid species and classification into functional types. Journal of Arid Environments 73(4):428–434

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Functional Ecology 8:315–323

    Article  Google Scholar 

  • Loreau M (1998) Biodiversity and ecosystem functioning: a mechanistic model. Proceedings of the National Academy of Sciences 95:5632–5636

    Article  CAS  Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17

    Article  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, S. (2011). Carbon Dynamics of Recolonized Cutover Minerotrophic Peatland: Implications for Restoration. Ph.D. thesis. University of Calgary, Alberta, Canada

  • Mahmood S, Strack M (2011) Methane dynamics of recolonized cutover minerotrophic peatland: implications for restoration. Ecological Engineering 37(11):1859–1868

    Article  Google Scholar 

  • Malloy S, Price JS (2014) Fen restoration on a bog harvested down to sedge peat: a hydrological assessment. Ecological Engineering 64:151–160

    Article  Google Scholar 

  • McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. Journal of Applied Ecology 40(2):354–367

    Article  Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737

    Article  Google Scholar 

  • Nicholson BJ, Vitt DH (1990) The paleoecology of a peatland complex in continental western Canada. Canadian Journal of Botany 68:121–138

    Article  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17(2):798–818

    Article  Google Scholar 

  • Rankin T, Strachan I, Strack M (2018) Carbon dioxide and methane exchange at a post-extraction, unrestored peatland. Ecological Engineering 122:241–251

    Article  Google Scholar 

  • Riutta T, Laine J, Tuittila E-S (2007) Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–733

    Article  CAS  Google Scholar 

  • Robroek BJ, Jassey VE, Kox MA, Berendsen RL, Mills RT, Cecillon L et al (2015) Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. Journal of Ecology 103(4):925–934

    Article  CAS  Google Scholar 

  • Robroek BJM, Jassey VEJ, Payne RJ, Martí M, Bragazza L, Bleeker A, Buttler A, Caporn SJM, Dise NB, Kattge J, Zając K, Svensson BH, van Ruijven J, Verhoeven JTA (2017) Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications 8:1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rochefort L, LeBlanc MC, Bérubé V, Hugron S, Boudreau S, Pouliot R (2016) Reintroduction of fen plant communities on a degraded minerotrophic peatland. Botany 94(11):1041–1051

    Article  CAS  Google Scholar 

  • Roth, S. (1999). Etablieron von Schilfrohrichten und Seggenriedern auf wiedervernaBtem Niedermoor. (Ph.D. thesis. Phillips-Universitat, Marburg)

  • Schwintzer CR (1979) Nitrogen fixation by Myrica gale root nodules Massachusetts wetland. Oecologia 43:283–294

    Article  PubMed  Google Scholar 

  • Silvan N, Tuittila ES, Kitunen V, Vasander H, Laine J (2005) Nitrate uptake by Eriophorum vaginatum controls N2O production in a restored peatland. Soil Biology and Biochemistry 37(8):1519–1526

    Article  CAS  Google Scholar 

  • Strack, M. & Srivastava, P. (2010). Seasonal dynamics of vegetation communities of a previously harvested minerotrophic peatland: using visual obstruction methods to estimate biomass and leaf area index. In: proceedings of the 44th annual CMOS congress/36th annual scientific meeting of CGU, may 31 to June 4, 2010

  • Strack M, Mwakanyamale K, Hassanpour Fard G, Bird M, Bérubé V, Rochefort L (2017) Effect of plant functional type on methane dynamics in a restored minerotrophic peatland. Plant and Soil 410(1–2):231–246

    Article  CAS  Google Scholar 

  • Tardif A, Shipley B (2012) Using the biomass-ratio and idiosyncratic hypotheses to predict mixed-species litter decomposition. Annals of Botany 111(1):135–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Thormann MN, Bayley SE, Currah RS (2001) Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta, Canada. Canadian Journal of Botany 79:9–22

    CAS  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland: application to boreal and subarctic regions. The Holocene 12:69–80

    Article  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. Trends in Ecology & Evolution 10:270–275

    Article  Google Scholar 

  • van der Nat F-J, Middelburg JJ (1998) Effects of two common macrophytes on methane dynamics in freshwater systems. Biogeochemistry 43:70–104

    Google Scholar 

  • van Ruijven J, Berendse F (2005) Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences 102(3):695–700

    Article  CAS  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai'i: plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs 59(3):247–265

    Article  Google Scholar 

  • Vitt DH (1990) Growth and production dynamics of boreal bryo-phytes over climatic, chemical and topographical gradients. Botanical Journal of the Linnean Society 104:35–59

    Article  Google Scholar 

  • Vitt DH (2000) Peatlands: ecosystems dominated by bryophytes. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 312–343

    Chapter  Google Scholar 

  • Waddington JM, Roulet NT (2000) Carbon balance of a boreal patterned peatland. Global Change Biology 6(1):87–97

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Functional Ecology 23(2):454–462

    Article  Google Scholar 

  • Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD (2013) Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters 16(10):1285–1293

    Article  PubMed  Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Article  Google Scholar 

  • Wilson D, Tuittila ES, Alm J, Laine J, Farrell EP, Byrne KA (2007) Carbon dioxide dynamics of a restored maritime peatland. Ecoscience 14(1):71–80

  • Yli-Petäys M, Laine J, Vasander H, Tuittila E-S (2007) Carbon gas exchange of a revegetated cut-away peatland five decades after abandonment. Boreal Environment Research 12:177–190

    Google Scholar 

Download references

Acknowledgements

We thank M. Keith, E. Farries, M. Bird and S. Scarlett for help with collection of field data and lab analysis. The funding for this project was provided by the University of Calgary, Department of Geography and an Industrial Research Chair to Line Rochefort at Université Laval sponsored by Natural Sciences and Engineering Research Council (NSERC) and the Canadian Sphagnum Peat Moss Association (CSPMA) and its members.

Author information

Authors and Affiliations

Authors

Contributions

VB, LR, GH and MS conceived the ideas and designed methodology; GH and EF collected and analysed the data; GH and MS led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Golnoush Hassanpour Fard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour Fard, G., Farries, E., Bérubé, V. et al. Key Species Superpose the Effect of Species Richness and Species Interaction on Carbon Fluxes in a Restored Minerotrophic Peatland. Wetlands 40, 333–349 (2020). https://doi.org/10.1007/s13157-019-01176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-019-01176-5

Keywords

Navigation