Skip to main content
Log in

Slow Recovery of Mire Vegetation from Environmental Perturbations Caused by a Heat Wave and Experimental Fertilization

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We monitored vegetation changes in an alpine mire after stopping an experiment of nutrient addition, during which the mire experienced a heat wave. We aimed at assessing the capacity of mire vegetation to recover towards the original state. Nitrogen and phosphorus were added during the growing seasons of 2002–2009. We recorded periodically the cover of all vascular plant species and moss species from 2002 to 2012, i.e., 9 years after the heat wave and 3 years after discontinuing fertilization. The principal effect of the 2003 heat wave consisted in a rapid increase in cover of vascular plants and a parallel decrease in cover of mosses. These trends slowed down after 6 years and almost totally halted 9 years after the heat wave. The heat wave was the main driver of vegetation changes but the vegetation also responded to fertilization. Species within plant functional types (PFTs) showed differing responses to the heat wave and/or fertilization. The mire vegetation showed poor capacity to recover towards the initial conditions. Changes in vegetation composition were determined by individualistic responses of species to varying ecological factors. Grouping plant species into PFTs may conceal important differences in the responses of mire vegetation to environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belyea LR, Baird AJ (2006) Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecological Monographs 76:299–322

    Article  Google Scholar 

  • Berendse F, van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology 7:591–598

    Article  Google Scholar 

  • Blodau C, Basiliko N, Mayer B, Moore TR (2006) The fate of experimentally deposited nitrogen in mesocosms from two Canadian peatlands. Science of the Total Environment 364:215–228

    Article  CAS  PubMed  Google Scholar 

  • Bombonato L, Gerdol R (2012) Manipulating snow cover in an alpine bog: effects on ecosystem respiration and nutrient content in soil and microbes. Climatic Change 114:261–272

    Article  Google Scholar 

  • Bombonato L, Siffi C, Gerdol R (2010) Variations in the foliar nutrient content of mire plants: effects of growth-form based grouping and habitat. Plant Ecology 211:235–251

    Article  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hájková P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen depositions in Europe. New Phytologist 163:609–616

    Article  Google Scholar 

  • Bragazza L, Buttler A, Habermacher J, Brancaleoni L, Gerdol R, Fritze H, Hanajík P, Laiho R, Johnson D (2012) High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Global Change Biology 18:1163–1172

    Article  Google Scholar 

  • Brancaleoni L, Gerdol R (2014) Habitat-dependent interactive effects of a heatwave and experimental fertilization on the vegetation of an alpine mire. Journal of Vegetation Science 25:427–438

    Article  Google Scholar 

  • Breeuwer A, Heijmans MMPD, Robroek BJM, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia 156:155–167

    Article  PubMed Central  PubMed  Google Scholar 

  • Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology 10:330–339

    Article  Google Scholar 

  • Bret-Harte MS, Mack MC, Goldsmith GR, Sloan DB, DeMarco J, Shaver GR, Ray PM, Biesinger Z, Chapin FS III (2008) Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra. Journal of Ecology 96:713–726

    Article  PubMed Central  PubMed  Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561

    Article  Google Scholar 

  • Briffa KR, van der Schrier G, Jones PD (2009) Wet and dry summers in Europe since 1750: evidence of increasing drought. International Journal of Climatology 29:1894–1905

    Article  Google Scholar 

  • Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Global Change Biology 20:2972–2982

    Article  Google Scholar 

  • Brown RD, Mote PW (2009) The response of Northern hemisphere snow cover to a changing climate. Journal of Climate 22:2124–2145

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology 13:1168–1186

    Article  Google Scholar 

  • Cairney JWC (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant and Soil 344:51–71

    Article  CAS  Google Scholar 

  • Carbutt C, Edwards TJ, Fynn RWS, Beckett RP (2013) Evidence for temperature limitation of nitrogen mineralisation in the Drakensberg Alpine Centre. South African Journal of Botany 88:447–454

    Article  CAS  Google Scholar 

  • Chapin FS III, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840

    Article  Google Scholar 

  • Chapman SB, Rose RJ (1991) Changes in the vegetation at Coom Rigg Moss national nature reserve within the period 1958–86. Journal of Ecology 28:140–153

    Google Scholar 

  • Charman DJ, Pollard AJ (1995) Long-term vegetation recovery after vehicle track abandonment on Dartmoor, SW England, UK. Journal of Environmental Management 45:73–85

    Article  Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editori, Rome

    Google Scholar 

  • Cortini Pedrotti C (2001) Flora dei muschi d’Italia. Antonio Delfino Editore, Rome

    Google Scholar 

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89

    Article  CAS  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11:516–531

    Article  PubMed  Google Scholar 

  • Dise NB (2009) Peatland response to global change. Science 326:810–811

    Article  CAS  PubMed  Google Scholar 

  • Frankl R, Schmeidl H (2000) Vegetation change in a South German raised bog: ecosystem engineering by plant species, vegetation switch or ecosystem level feedback mechanisms? Flora 195:267–276

    Google Scholar 

  • Freléchoux F, Buttle A, Schweingruber FH, Gobat JM (2004) Spatio-temporal patterns of bog pine (Pinus uncinata var. rotundata) at the interface with the Norway spruce (Picea abies) belt on the edge of a raised bog in the Jura Mountains, Switzerland. Annals of Forest Science 61:309–318

    Article  Google Scholar 

  • Friedrich U, von Oheimb G, Dziedek C, Kriebitzsch WU, Selbmann K, Härdtle W (2011) Mechanisms of purple moor-grass (Molinia caerulea) encroachment in dry heathland ecosystems with chronic nitrogen inputs. Environmental Pollution 159:3553–3559

    Article  CAS  PubMed  Google Scholar 

  • Fritz C, Lamers LPM, Riaz M, van den Berg LJL, Elzenga TJTM (2014) Sphagnum mosses - Masters of efficient N-uptake while avoiding intoxication. PLoS ONE 9(1):e79991. doi:10.1371/journal.pone.0079991

  • García-Herrera R, Díaz J, Trigo RM, Luterbacher J, Fischer EM (2010) A review of the European summer heat wave of 2003. Critical Reviews in Environmental Science and Technology 40:267–306

    Article  Google Scholar 

  • Gerdol R, Tomaselli M (1997) Vegetation of wetlands in the Dolomites. Cramer, Berlin

    Google Scholar 

  • Gerdol R, Bonora A, Gualandri R, Pancaldi S (1996) CO2 exchange, photosynthetic pigment composition, and cell ultrastructure of Sphagnum mosses during dehydration and subsequent rehydration. Canadian Journal of Botany 74:726–734

    Article  CAS  Google Scholar 

  • Gerdol R, Anfodillo T, Gualmini M, Bragazza L, Brancaleoni L (2004) Biomass distribution of two subalpine dwarf shrubs with contrasting leaf habit in relation to soil moisture and soil nutrient content. Journal of Vegetation Science 15:457–464

    Article  Google Scholar 

  • Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007) Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Global Change Biology 13:1–12

    Article  Google Scholar 

  • Gerdol R, Bragazza L, Brancaleoni L (2008) Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and CO2 exchange in an alpine bog. New Phytologist 179:142–154

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Wang K, Kellomäki S, Zhang C, Martikainen PJ, Shurpali N (2012) Modeling water table changes in boreal peatlands of Finland under changing climate conditions. Ecological Modelling 244:65–78

    Article  Google Scholar 

  • González E, Rochefort L, Boudreau S, Hugron S, Poulin M (2013) Can indicator species predict restoration outcomes early in the monitoring process? A case study with peatlands. Ecological Indicators 32:232–238

    Article  Google Scholar 

  • González E, Henstra SW, Rochefort L, Bradfield GE, Poulin M (2014) Is rewetting enough to recover Sphagnum and associated peat-accumulating species in traditionally exploited bogs? Wetlands Ecology and Management 22:49–62

    Article  Google Scholar 

  • Granath G, Strengbom J, Rydin H (2012) Direct physiological effects of nitrogen on Sphagnum: a greenhouse experiment. Functional Ecology 26:353–364

    Article  Google Scholar 

  • Grünig A, Vetterli L, Wildi O (1986) Die Hoch- und Übergangsmoore der Schweiz. Eidg Anstalt für das Forstliche Versuchswesen. Bericht n. 281, Zurich

  • Gunnarsson U, Flodin LÅ (2007) Vegetation shifts towards wetter site conditions on oceanic ombrotrophic bogs in southwestern Sweden. Journal of Vegetation Science 18:595–604

    Article  Google Scholar 

  • Gunnarsson U, Rydin H (1998) Demography and recruitment of Scots pine on a raised bog in eastern Sweden and relationships to microhabitat differentiation. Wetlands 18:133–141

    Article  Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy on Sphagnum dominated mire ecosystems: − a 40 year study. Ecography 25:685–704

    Article  Google Scholar 

  • Hájková P, Hájek M, Rybníček K, Jiroušek M, Tichý L, Králová Š, Mikulášková E (2011) Long-term vegetation changes in bogs exposed to high atmospheric deposition, aerial liming and climate fluctuation. Journal of Vegetation Science 22:891–904

    Article  Google Scholar 

  • Heijmans MMPD, Mauquoy D, van Geel B, Berendse F (2008) Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. Journal of Vegetation Science 19:307–354

    Article  Google Scholar 

  • Heijmans MMPD, van der Knaap YAM, Holmgren M, Limpens J (2013) Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Global Change Biology 19:2240–2250

    Article  PubMed  Google Scholar 

  • Hoosbeek MR, Van Breemen N, Vasander H, Buttler A, Berendse F (2002) Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biology 8:1130–1138

    Article  Google Scholar 

  • Jägerbrand AK, Alatalo JM, Chrimes D, Molau U (2009) Plant community responses to 5 years of simulated climate change in meadow and heath ecosystems at a subarctic-alpine site. Oecologia 161:601–610

    Article  PubMed  Google Scholar 

  • Jalali M, Matin NH (2013) Soil phosphorus forms and their variations in selected paddy soils of Iran. Environmental Monitoring and Assessment 185:8557–8565

    Article  CAS  PubMed  Google Scholar 

  • Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 63:420–429

    Article  Google Scholar 

  • Jones AG, Power SA (2012) Field-scale evaluation of effects of nitrogen deposition on the functioning of heathland ecosystems. Journal of Ecology 100:331–342

    Article  CAS  Google Scholar 

  • Jones HP, Schmitz OJ (2009) Rapid recovery of damaged ecosystems. PLoS ONE 29, e5653

    Article  Google Scholar 

  • Kapfer J, Grytnes JA, Gunnarsson U, Birks JB (2011) Fine-scale changes in vegetation composition in a boreal mire over 50 years. Journal of Ecology 99:1179–1189

    Article  Google Scholar 

  • Keuper F, Dorrepaal E, Van Bodegom PM, Aerts R, Van Logtestijn RSP, Callaghan TV, Cornelissen JHC (2011) A race for space? How Sphagnum fuscum stabilizes vegetation composition during long-term climate manipulations. Global Change Biology 17:2162–2171

    Article  Google Scholar 

  • Kollmann J, Kjørup Rasmussen K (2012) Succession of a degraded bog in NE Denmark over 164 years – monitoring one of the earliest restoration experiments. Tuexenia 32:67–85

    Google Scholar 

  • Konvalinková P, Prach K (2014) Environmental factors determining spontaneous recovery of industrially mined peat bogs: a multi-site analysis. Ecological Engineering 69:38–45

    Article  Google Scholar 

  • Krisai R, Schmidt R (1983) Die Moore Oberösterreichs. – Natur- und Landschaftsschutz in Oberösterreich. Trauner, Linz

    Google Scholar 

  • Kudernatsch T, Fischer A, Bernhardt-Römermann M, Abs C (2008) Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic and Applied Ecology 9:263–274

    Article  Google Scholar 

  • Laine J, Harju P, Timonen T, Laine A, Tuittila ES, Minkkinen K, Vasander H (2009) The intricate beauty of Sphagnum mosses – a Finnish guide to identification. University of Helsinki Department of Forest Ecology Publications 39:1–190

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Limpens J, Berendse F (2003) Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–345

    Article  CAS  PubMed  Google Scholar 

  • Limpens J, Heijmans MMPD (2008) Swift recovery of Sphagnum nutrient concentrations after excess supply. Oecologia 157:153–161

    Article  PubMed Central  PubMed  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Macrae ML, Devito KJ, Strack M, Waddington JM (2013) Effect of water table drawdown on peatland nutrient dynamics: implications for climate change. Biogeochemistry 112:661–676

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  CAS  PubMed  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitch A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M (eds) Climate change 2007: The physical science basis, Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–846

    Google Scholar 

  • Messiga AJ, Ziadi N, Belanger G, Morel C (2013) Soil nutrients and other major properties in grassland fertilized with nitrogen and phosphorus. Soil Science Society of America Journal 77:643–652

    Article  CAS  Google Scholar 

  • Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Siegenthaler A, Gobat JM (2002) Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. Journal of Ecology 90:529–533

    Article  CAS  Google Scholar 

  • Mountford JO, Lakhani KH, Holland RJ (1996) Reversion of grassland vegetation following the cessation of fertilizer application. Journal of Vegetation Science 7:219–228

    Article  Google Scholar 

  • Mulligan RC, Gignac LD (2002) Bryophyte community structure in a boreal poor fen II: interspecific competition among five mosses. Canadian Journal of Botany 80:330–339

    Article  Google Scholar 

  • Nordbakken JF (2001) Fine-scale five-year vegetation change in boreal bog vegetation. Journal of Vegetation Science 12:771–778

    Article  Google Scholar 

  • Ohlson M, Økland RH, Nordbakken JF, Dahlberg B (2001) Fatal interactions between Scots pine and Sphagnum mosses in bog ecosystems. Oikos 94:425–432

    Article  Google Scholar 

  • Olde Venterink H, Kardel I, Kotowski W, Peeters W, Wassen MJ (2009) Long-term effects of drainage and hay-removal on nutrient dynamics and limitation in the Biebrza mires, Poland. Biogeochemistry 93:235–252

    Article  Google Scholar 

  • Paal J, Vellak K, Liira J, Karofeld E (2010) Bog recovery in northeastern Estonia after the reduction of atmospheric pollutant input. Restoration Ecology 18:387–400

    Article  Google Scholar 

  • Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecology 196:111–121

    Article  Google Scholar 

  • Pouliot R, Rochefort L, Karofeld E (2012) Initiation of microtopography in re-vegetated cutover peatlands: evolution of plant species composition. Applied Vegetation Science 15:369–382

    Article  Google Scholar 

  • Robroek BJM, Schouten MGC, Limpens J, Berendse F, Poorter H (2009) Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Global Change Biology 15:680–691

    Article  Google Scholar 

  • Rowe EC, Smart SM, Kennedy VH, Emmett BA, Evans CD (2008) Nitrogen deposition increases the acquisition of phosphorus and potassium by heather Calluna vulgaris. Environmental Pollution 155:201–207

    Article  CAS  PubMed  Google Scholar 

  • Rydin H, Barber KE (2001) Long-term and fine-scale coexistence of closely related species. Folia Geobotanica 36:53–61

    Article  Google Scholar 

  • Schenker G, Lenz A, Körner C, Hoch G (2014) Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiology 34:302–313

    Article  PubMed  Google Scholar 

  • Sillasoo Ü, Väliranta M, Tuittila ES (2011) Fire history and vegetation recovery in two raised bogs at the Baltic Sea. Journal of Vegetation Science 22:1084–1093

    Article  Google Scholar 

  • Sistla S, Schimel J (2013) Seasonal patterns of microbial extracellular enzyme activities in an arctic tundra soil: identifying direct and indirect effects of long-term summer warming. Soil Biology and Biochemistry 66:119–129

    Article  CAS  Google Scholar 

  • Strakova P, Penttilä T, Laine J, Laiho R (2012) Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands. Global Change Biology 18:322–335

    Article  Google Scholar 

  • Sullivan PF, Arens SJT, Chimner RA, Welker JM (2008) Temperature and microtopography interact to control carbon cycling in a high arctic fen. Ecosystems 11:61–76

    Article  CAS  Google Scholar 

  • ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: Software for ordination (version 5.0). Microcomputer Power, Ithaca

    Google Scholar 

  • Tomassen H, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM (2004) Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? Journal of Applied Ecology 41:139–150

    Article  CAS  Google Scholar 

  • Tuittila ES, Rita H, Vasander H, Laine J (2000) Vegetation patterns around Eriophorum vaginatum L. tussocks in a cut-away peatland in southern Finland. Canadian Journal of Botany 78:47–58

    Article  Google Scholar 

  • van der Wal R, Pearce ISK, Brooker RW (2005) Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142:159–168

    Article  PubMed  Google Scholar 

  • Vellak K, Liira J, Karofeld E, Galanina O, Noskova M, Paal J (2014) Drastic turnover of bryophyte vegetation on bog microforms initiated by air pollution in NE Estonia and bordering Russia. Wetlands 34:1097–1108

    Article  Google Scholar 

  • Verhoeven JTA, Beltman B, Dorland E, Robat SA, Bobbink R (2011) Differential effects of ammonium and nitrate deposition on fen phanerogams and bryophytes. Applied Vegetation Science 14:149–157

    Article  Google Scholar 

  • von Oheimb G, Power SA, Falk K, Friedrich U, Mohamed A, Krug A, Boschatzke N, Haerdtle W (2010) N:P ratio and the nature of nutrient limitation in Calluna-dominated heathlands. Ecosystems 13:317–327

    Article  CAS  Google Scholar 

  • Wallén B (1987) Growth-pattern and distribution of biomass of Calluna vulgaris on an ombrotrophic bog. Holarctic Ecology 10:73–79

    Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Functional Ecology 23:454–462

    Article  Google Scholar 

  • Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478

    Article  Google Scholar 

  • Xing Y, Bubier J, Moore T, Murphy M, Basiliko N, Wendel S, Blodau C (2011) The fate of 15 N-nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry 103:281–296

    Article  CAS  Google Scholar 

  • Yano Y, Shaver GR, Rastetter EB, Giblin AE, Laundre JA (2013) Nitrogen dynamics in arctic tundra soils of varying age: differential responses to fertilization and warming. Oecologia 173:1575–1586

    Article  PubMed  Google Scholar 

  • Zobel M (1988) Autogenic succession in boreal mires – a review. Folia Geobotanica & Phytotaxonomica 23:417–445

    Google Scholar 

Download references

Acknowledgments

Laura Bombonato, Laura Brancaleoni, Luca Bragazza, Sara Brighenti, Roberta Marchesini, Roberto Casoni, Federica Contro, Marcello Tomaselli, Alessandro Petraglia, Valentina Stignani and Luca Ventimiglia assisted during the field work. All are kindly acknowledged. Financial support was granted by the University of Ferrara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Gerdol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerdol, R., Brancaleoni, L. Slow Recovery of Mire Vegetation from Environmental Perturbations Caused by a Heat Wave and Experimental Fertilization. Wetlands 35, 769–782 (2015). https://doi.org/10.1007/s13157-015-0668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0668-9

Keywords

Navigation